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Abstract 

Dealing with a modified double Laplace transform (MDLT) technique, 

we have established some convergence results. Then, using this new 

technique, we propose resolutions of some equations such as pseudo-

hyperbolic and the Benney-Luke equations. The advantage of MDLT 

is that we can obtain exact solutions in one step. The technique aims 

to provide viable results with respect to particular cases. Finally, some 

numerical results are presented. 

1. Introduction 

The nonlinear evolution equation (NLEE) has a lower number of 

iterations due to its far-reaching decisions. In today’s natural sciences, 

nonlinear phenomena need to take a prominent place in the moss-covered 

oaks, excellent areas of research, and various extensions of science and 

technology. 

The NLEE-enabled solutions provided are based on data from 

unpredictable physical phenomena surrounding the structure. These efforts 

include homotopy checking strategies, gluing strategies, the variational 

iteration strategy [12-16, 18], the projected differential transform method 

and Laplace transform (Elzaki [17]), double Laplace transform (Dhunde          

and Waghmare [15]), and double and modified double Laplace transform 

[22-26]. 
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Numerous ways to explain and compute nonlinear partial differential 

equations with fractional derivatives and replicate Laplace transforms have 

been proposed (Wu et al.), [5-9] to solve the Benney-Luke (Islam et al.), [11] 

and, solving singular system of hyperbolic equations, (Elzaki et al.) [1]. In 

this paper, we present how to make the appropriate choice of the initial 

values for solution using only one step. We also discuss the convergence of 

one of the problems solved in this paper. 

We propose a blend of the MDLT and the present day method to be 

used. The single modified transform (SMT) is characterized by: 

( )[ ] ( ) ( )
∞ −µΦµ=µ=Φε
0

2 .dvevTv
v  

2. The MDLT 

In this section, we present the MDLT of a function. Additionally, we 

discuss its convergence. 

Definition. A function ( ),, vwΦ  ,, +∈ Rvw  is said to be a convergent 

infinite series if 

( )[ ]µηΦε ,,, vw  

( ) ( ) 
∞ ∞ 








µ
+

η
−

>Φηµ=µη=
0 0

,0,,,, vwdwdvevwT

vw

 (1) 

where η  and µ  are complex numbers.  

To obtain the solutions of the Benney-Luke and singular pseudo-

hyperbolic equations by the combination of MDLT and the unused strategy, 

we begin with 

( ) ( ),,0,
1

2 µη−µηη=






∂
Φ∂ε TT
w

 

( ) ( ) ( )
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( ) ( ) ( ) ( ).0,0,00,,
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2 TTTT
vw
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∂∂
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For more details, see [16]. 

Here we ought to examine a few theorems of convergence of MDLT. 

Theorem 1. If ( )
∞ µ−

Φµ
0

, dvvwe

v

 converges at ,0µ=µ  then 

( )
∞ µ−

Φµ
0

, dvvwe

v

 converges at .0µ<µ  

Proof. Let ( ) ( ) Φµ= µ−v
u

duuwevwp
00 ,,, 0  .0 ∞<< v  Then 

  (i) ( ) ,00, =wp  

 (ii) ( )vwp
v

,lim
∞→

 exists, and 

(iii) ( ) ( ).,, 0
0 vwevwp

v

v Φµ= µ−
 

Choosing ,, 11 Rε  such that ,0 11 R<ε<  we have 
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The last integral becomes 

( )ε
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µ 1
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0

0
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R
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v

dvvwpe  
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Now as, ,,0 11 ∞→→ε R  and ,0µ<µ   

( ) ( ) 
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µµ

µ−µ−
µ−

µ<µ







µµ
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0
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dvvwpedvvwe
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Theorem 1 is proved if the last integral converges. 

Using the limit test for convergence, we obtain 

( ) ,0,lim 0

0

2 =








µµ

µ−µ−

∞→
vwpev

v

v
 

and hence ( )
∞ µ

−
Φµ

0
, dvvwe

v

 converges when .0µ<µ  

Theorem 2. If ( ) ( )
∞ µ−

Φµ=µ
0

,, dvvwewQ

v

 converges for ,0µ<µ  

and ( )
∞ η−

µη
0

, dwwQe

w

 converges at ,0η=η  then ( )
∞ η

−
ηη

0
, dwwQe

w

 

converges for .0η<η  

Proof. Follows as that of Theorem 1. 
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Theorem 3. If ( )vw,Φ  is continuous and 

( ) 
∞ ∞ µ

−
η

−
Φηµ

0 0
, dwdvvwe

vw

 

converges for ,0µ=µ  ,0η=η  then ( ) 
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Φηµ
0 0

, dwdvvwe

vw
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Proof. We have 
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∞ µ

−
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0
.,, dvvwewQ
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Using Theorems 1 and 2, we have that 

( ) 
∞ ∞ µ−η−

Φηµ
0 0

, dwdvvwe

vw

 converges for ., 00 µ<µη<η  

We introduce the general equation that holds in the equations of Benney-

Luke and singular pseudo-hyperbolic in the following form: 

wvwwwvwwvvwwwwwwvv UeUUdUcUbUaUU ++−+−  

( ) ( ) ( ),,
2
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w

U
w

vw
wg

w

U
w
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∂

∂
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where a, b, c, d and e are constants. 
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Then 

 (i) If ( ) ,0=wg  ,2=e  ,1== da  then equation (4) becomes 

( ).,2 vwfUUUUcUbUUU wvwwwvwwvvwwwwwwvv =++−+−  (5) 

Equation (5) is called the Benney-Luke equation, where ,
3

1−σ=c  σ is 

the Bond number. 

(ii) If ,0===== edcba  ( ) ,
1

w
wg =  then equation (4) becomes 

( ).,
11 2

vwf
w

U
w

vwww

U
w

ww
Uvv =








∂
∂

∂∂
∂−








∂
∂

∂
∂−  (6) 

Equation (6) is called the singular pseudo-hyperbolic equation. 

3. The New Strategy (MDLT) 

To clarify our strategy, we consider 

( ) ( ) ( ) ( ) ( ),,,,,, vwfvwNUvwGUvwRUvwDU =+++  (7) 

where D may be a second order operator, R a linear operator, N a nonlinear 

operator, and G a singular operator. 

The initial conditions are 

 ( ) ( ) ( ) ( ).0,,0, 21 wfwUwfwU t ==  (8) 

To reveal the solution of equations (7), (8), taking modified double 

Laplace transform (MDLT) of equation (7), and SMT of equation (8), we 

obtain 

( )( ) ( ) ( )ηµ−η−ε
µ

2122
,

1
KKvwU  

( ) ( ) ( ) ( )[ ],,,,,2 vwNUvwGUvwRUvwf −−−ε=  (9) 

where ( ),1 ηK  ( )η2K  are single modified transforms of ( ),1 wf  ( ),2 wf  

respectively. 
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We assume that the solution of equation (7) can be expressed in the 

series form: 

 ( ) ( )
∞

=
=

0

.,,

n

n vwUvwU  (10) 

Taking the inverse MDLT of equation (9), and making use of equation 

(10), we get 

( )
∞

=0

,

n

n vwU  

( ) { ( ) ( ) ( ) ( )[ ]}.,,,,, 2
21

2 vwNUvwGUvwRUvwfvwF −−−εµε+= −  (11) 

This strategy depends on how to choose the beginning iteration ( ),,0 vwU  

that goes to the exact solution in a few steps for the action in the case we 

prefer, to choose, ( ) ( ).,,0 vwFvwU =  

Then the solution, ( ),, txU  can be recursively decided by utilizing: 

( ) { ( ) ( ) ( ) ( )[ ]},,,,,, 2
21

21 vwNUvwGUvwRUvwfvwU nnnn −−−εµε= −
+  

( ) ( ).,,0 vwFvwU =  

From these equations, we obtain 

( ) ( ) ( ) ...,,,,,,, 210 vwUvwUvwU  

and after that we get the solution in a series form for equation (10). 

4. Application 

To demonstrate the productivity of this strategy in solving Benney-Luke 

hyperbolic and singular pseudo-hyperbolic equations, we consider the 

following examples: 
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Example 1. In equation (5), we put ( ) vvwf 2, =  with the initial 

conditions: 

 ( ) ( ) .0,,10, wwUwU v ==  (12) 

Utilizing the same steps in area 3, 

( )( ) 32
22

,
1 µη−η−ε

µ
vwU  

[ ].222 vUUUUcUbUU wvwwwvwwvvwwwwww +−−+−ε=  (13) 

Applying the inverse MDLT to equation (13), we obtain 

( ) { [ wwvvwwwwww cUbUUwvvwU +−εµε++= −
2

21
21,  

]}.222 vUUUU wvwwwv +−−  

At that point, the recursive relation is as follows: 
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( ) .1,0 wvvwU +=  (14) 

The primary components are given by 

( ) ( ) { [ ]} .00,,1, 2
21

10 =εµε=+= −
vwUwvvwU  

Then the solution of equation (5) with ( ) vvwf 2, =  is 

( ) ( )
∞

=
+==

0

.1,,

n

n wvvwUvwU  
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Figure 1. Result obtained in Example 1 of Benney-Luke and singular 

pseudo- hyperbolic equation. 

Example 2. In this example, we put 

( ) ( )vvvwvwf cos4sin4sin, 2 ++−=  

in equation (6), with 

 ( ) ( ) .0,,00, 2
wwUwU v ==  (15) 

Here we use the same steps which we used as before in Example 1:  

( )( )vwU ,2ε  
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Taking the inverse MDLT of equation (16), we obtain 

( )vwU ,  

.cos4sin4
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At that point, the recursive relations is given by 

( )vwUn ,1+  

,cos4sin4
11 2

2
21

2
















−−








∂
∂

∂∂
∂+








∂
∂
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w
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U
w

ww
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( ) .sin, 2
0 vwvwU =  

From above, the primary components take the form: 

( ) ( ) { [ ]} .00,,sin, 2
21

21
2

0 =εµε== −
vwUvwvwU  

Then, the solution of equation (6), with 

( ) ( )vvvwvwf cos4sin4sin, 2 ++−=  

is 

( ) ( )
∞

=
==

0

2
.sin,,

n

n vwvwUvwU  

 

Figure 2. Solutions in Example 2 of Benney-Luke and singular pseudo- 

hyperbolic equation. 
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Figures 1 and 2 present the solutions of Benney-Luke and singular 

pseudo-hyperbolic equations in Examples 1 and 2, respectively. 

5. Convergence Analysis 

Here we study the convergence of MDLT, for the singular pseudo- 

hyberbolic equation 

 ( ).,
11 2

vwf
w

U
w

vwww

U
w

ww
Uvv +








∂
∂

∂∂
∂+








∂
∂

∂
∂=  (17) 

Consider the Hilbert space, ( ) [ ]( ),,0,2
ThkLH ×=  defined by the set 

of applications: 

( ) ( ) [ ]

( ) ( )[ ] ( )
.

,,,,

with,,0,:,

0
,

21
, 
















∞<




 εµε

×

−
µη vwdphkvwU

ThkVU

p

vw

 (18) 

We write the operator in the form: 

( ) ( ).,
2

32

2

2

2

2

vwwf
vw

U
w

vw

U

w

U
w

w

U

v

U
wUQ +

∂∂
∂+∂∂

∂+
∂
∂+∂

∂=
∂
∂=  (19) 

The proposed analytical technique is convergent if we consider the 

following: 

N1. ( ) ( )( ) .0,,,, >∈∀−≤−− qHVUVUqVUVQUQ  

N2. If 0>B  is a positive constant such that ,BU ≤  ,BV ≤  then 

there exists a constant ( ) 0>BC  such that 

( ) ( )( ) ( ) .,,,, HVUggVUBCgVQUQ ∈∀−≤−  

The next theorem tells us about the sufficient condition for the 

convergence. 
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Theorem 4. The following holds: 
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To prove this theorem, we just verify N1 and N2 for the above equation. 

We have 
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Therefore, the inner product is given by 
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if there exists 1α  such that 
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It follows by the use of Schwartz inequality that 

( ) ( ) VUVU
w

wVUVU
w

w −−
∂
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2
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2
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3

VUVUVU
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−−

∂∂
∂

 (24) 

If f is a Lipschitzian function and ,0>ς  then according to Cauchy-

Schwartz inequality, we have 

( ) ( )( )( )VUVfUfw −−− ,  

( ) ( ) ( ) ( ) VUVfUfVUVfUfw −−α≤−−≤ 1  

2
1 VU −ςα≤  
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or 

 ( ) ( )( )( ) ., 2
1 VUVUVfUfw −ςα−≥−−  (25) 

Substituting (21)-(25) into (20), we obtain 

( ) ( )( ) ( ),, 1413211 ςα−αα−α−αα−α≥−− VUVQUQ  

( ) ( )( ) ,, 22
VUKVUVQUQVU −≥−−−  

,1413211 ςα−αα−α−αα−α=K  

where 321 ,, ααα  and 4α  are constants. 

Thus N1 holds. 

Now, we verify N2. We have  

( ) ( )( )gVQUQ ,−  
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w
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2
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3

gVfUfwgVU
vw

w −+








−
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Exploiting Schwartz inequality, and the fact that U and V are bounded, 

there exists a number 5α  such that 

( ) ( )( ) ., 5 gVUgVQUQ −α≤−  

Thus N2 holds. 

6. Conclusion 

Using a newly developed strategy, we found the exact solutions of the 

Benney-Luke and singular pseudo-hyperbolic equations. More generally, we 

observe that this strategy is more time-efficient and less demanding. 
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