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Abstract

We consider the optimal control of a nonlinear elliptic problem with
missing data (so-called ill-posed problems). Using the notion of
no-regret and low-regret control, we give a characterization of the
control for ill-posed problems. More precisely, we study the control
of Cauchy evolution problems via a regularization approach which
generates incomplete information. We obtain a singular optimality
system characterizing the no-regret control for the Cauchy evolution
problems.

1. Introduction

Let N ONY and Q be a bounded open subset of RY with bounded
F=ToUl of class C2. For T >0, we set Q=Qx(0,T) and %, =T,
x(0,T), £, =Ty x(0,T). We consider the following controlled nonlinear

elliptic problem:

0z 3 _. .

¥ Az—-z7 =0 in Q,

zZ =, g_\z) =v on ZO, (D)
z(0) =0 in Q,

where z 0 I2(Q) is unknown on %; and v = (vg, v;) O (I*(Z))° is the

control.

We come across such a system while dealing with physical phenomenon
such as wave propagation and scattering, vibration of the structure, and

electromagnetic scattering.

Problem (1) is a Cauchy problem. It is well known that it is ill-posed
in the sense that it does not admit a solution in general and that existing
solutions (if any) are unstable. To act on such a system via a control, it
is worth working with suitable optimization tools. More precisely, we are

concerned in this paper with the following problem:
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inf J(v, 2), (2)
(v, z)OU

where

0z 3 )

—=-Az-7"=0 in Q,
U= )0 X201 4%
2=V, 5, =V on 3, z(0) =0in Q

is a closed subset of (I7(Z,))* x I?(Q), assuming that U # 0. We call any
control-state pair (v, z) JU an admissible couple. J is a strictly convex cost

functional defined for all admissible control-state couples (v, z) by
2 2 2
J(v,2)=z-z + No|| v + Nif| v , (3)
0.2 =z =2 By + Nolvo g + Ml g

where (No, N;) DR} xRY and z; 0 12(Q) is the desired state. We study

this problem combining the notion of no-regret control and low-regret
control introduced by Lions [10] to control problem with incomplete data
with the regularization method of the Laplacian, where we introduce a new
data:

0
7= 805 6_\Z) = gy on 2. 4

So we first consider for any y > 0, the low-regret problem:

inf sup (Je(vr. €)= Je(0.8) Vg0l o -Vl D}
(=)

V(2 (20))*\ o022 (5 )2 2(z))

Then we prove that the low-regret control converges to the no-regret

control solution of the problem:

inf [ sup  (J(v, &) - J(0, g))], (6)

V(L2 (20))*\ g0(12 ()2

that we characterize by giving the corresponding optimality system.
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Lions [1] introduced the notions of no-regret control and low-regret
control in order to control a parabolic equation governed with an operator
free unknown parameter and unknown initial condition. According to Lions,
by looking for such a control, one looks for the ‘best possible control’ v
which does ‘at least well” and ‘not much worse in the worst situation’ than
doing nothing. The notions were then applied to control some models with
incomplete data, including models involving fractional derivative in time.
We refer for instance to Lions [2, 3], Nakoulima et al. [4-7], Jacob and
Omrane [8], and Mophou [9].

2. Low-regret Control and No-regret Control

Due to the ill-posedness of the Cauchy elliptic problem, it is impossible
to solve it directly. For this, we introduce the notion of regularization. Our
method consists in regularizing (1) into an elliptic problem of incomplete

data. For € > 0, we consider the regularized problem:

d .
ﬁ_AZZS_Zg_SZSZO in Q,
0Az 0z
lg aVS =05 a_\f + AZS =M on ZO’ %
00z 0z
€2 ~ avs = €805 Sa—vs +Azg = €g) on 2y,
7(0) =0 in Q,

where g = (go. g1) 0 (I7(21))>. We then make the following remark:

Remark 1. For every fixed &g, and €g;, we assume the existence of a
unique solution to (7). Indeed, in the following subsection, €g, and €g; are
considered as data perturbations.

To come back to the original Cauchy problem, we make the following

change of variable N = Az and put € = 0. Then, we obtain
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0z A 3 _ .
FT An-z7=0 in Q,
Nn_y =
a_V =0 n-= 0 on Zl, (8)
z(0) =0 in Q,
and
0 0z
2-5h=v; o +n=von I, )
on _ _ . . . .
From (8), we have v N =0 on Z;. Using the unique continuation
of Mizohata [12], we deduce that g—\r} =n =0 on Z;. Hence, condition (9)
becomes
= vy g_\z) =y, on 2, (10)

that is, the same conditions of the original problem.

Lemma 2.1. Consider the cost functional:
e, 8) =l ze(v. &) =za 2, +Nolvo I, +Nillw 2, (D)
L°(0) L7 (%) L7 (3o)
Under the assumptions of the previous section, for all v [ (LZ(ZO))2
and g O (I2())2,
Je(v, g) = J£(0, g) = J¢(v, 0) = J¢(0, 0)

+ zgv,O—zd,a—v,O +=(v, 0
2z 0) - 20, 550, 0) + 5 1, 0)

080 0g; 2(0)

_ 2<z£(0, 0) -z, %(O, 0) + g%(o, 0)>L2(Q). (12)

Proof. We refer to [13]. O
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We use a method developed in [13] to obtain the following result:

Lemma 2.2. Under the assumptions of the previous section, consider the

function J defined by (11). Then for all vO(I*(2y))* and g O(I(2))%,
Js(V’ g) _18(0, g)

= Jg(v, 0) = J¢(0, 0)

0 0
* 2€(<Zs(v) = 2(0). go)p2(s)) * <$ (v) - %(0), g1>L2(Zl)J’ (13)

where {¢(v) is a solution of:

_ag_te = N0 ~ 30 (2¢)” — €l = ~(2e(its. 0) = 24) in Q.

el _agés =0 s%Z—VS+Az£ -0 on 3y,

Ce(l,v) =0 in Q
Remark 2.

sup  (J(v, g) - J(0, g))
g0 ()

= Je(v, 0) = J¢(0, 0)

as(v)

+2¢  sup ((S(v), 20)12(s.y * <—, g1> J, (15)
eO(2(2)))? cE e e
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with S(v) = Z(v) = ¢(0), and

sup L(S(V)’ gO)LZ(Zl) * <ag—$})’ g1>L2(21)J

g0 ()

too if L(S(v), 80)12(z)) <6§_\(}v), g1>L2(z )J »0
1

0 if 5() 0 g and B0 0 g 0g 0 (2232

To make sense of the following minimization problem:
mf s (Ug) =0 8D, (16)
VO™ (2o )\ gO(£2()))?

we consider the set:

0= {v 0 (22()) such as (SO). go) 205, *+ <"§_\(}V) gl>L2(Z =0.0¢D (LZ(ZI))Z}

a7
2.1. Low-regret control
To make solving the problem (16) a bit easier, Lions introduced the

expressions —Y|| go ||iz( and -V g ||i2 =) where y denotes a relaxation

)

parameter and is strictly positive (y > 0). Thus
inf sup (Je(v.8) = Te(0. 8) M g0l ~M&il, )|
vD(L2 (ZO))2 o( 12 (z ))2 ¢ & ? (Z1) 1 (Z1)
(18)
The control u satisfying (18) is called a low-regret control.

The concept of < low-regret control > depends on y and the norm

Igll-
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It is interpreted as an approximation of no-regret control.

Indeed, with low-regret control, we admit the possibility of making a

control choice u slightly catastrophic than the ground state with a margin of

error not exceeding V|| 8 ||22 2 )

Lemma 2.3. Consider the function J. given by (11). Then for all v L

(L2 (Zo ))2, the relaxed problem (16) becomes:

as() |2 j .
ov LZ(ZI) ( )

2
. € 2
f ,0)=Jg(0,0)+—|| S
vl](len(Zo))z(Js(v )70 0 IS 5+

Proof. Using (13),

Je(v, 8) = J¢(0, g)

= Jg(v, 0) = J¢(0, 0)

[(ZV(V) 2{(0), £80)12 (3, < E(v) - (O) 8g1> J
2(z)

So,

)

sup  (Je(v, g) = J&(0, ) — ¥l 2o ”iz -l g |

2
sO(12(z)))? )

= Je(v, 0) = J¢(0, 0)

(x)

Y Y
#2 sup {«z(v) ~2¥(0). £20) s, <% () - %E o). egl>

g2 ()

_yY 2 _y 2
Mol )~ Slaila J
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According to the Fenchel transformation,

Yy
sup | Q) - QU(0). £80) 25, + <% (v) - %= (o). eg1>

g0(% (%))

_y 2 _y 2
Mol ~Slaills, J

2
&

2 oY, \_at)
"LZ(ZI) + 2y _S(V) a_\f(o)

£2
= £120)-20) o

()
We thus obtain the result. O

Finally, we can formulate the problem (16) as follows:

Forall y > 0, find uf O (I*(,))* such that:

JY@Y)=inf _JY(), (20)
vO(22(2))
with
2 2 2
V(o) = _ € 2 €7]los(v)
‘]8 (V) - JS(V’ O) JS(O’ 0) + y " S(V) ”LZ(ZI) + y aV L2(Zl)‘

Problem (20) is a low-regret problem and its solution is called

low-regret control.

Remark 3. In contrast to the linear case, the function J g 1S not convex.
Therefore, we do not necessarily have the uniqueness of ug. Moreover, we
are not sure that u, converges in 0. Thus, we use the penalization-adapted

method defined by Lions in [11] for the search for low-regret control.
2.2. Existence of adapted low-regret control

In this part, we are interested in finding a solution of the following
minimization problem:
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inf  JY (v), 1)
vO(22(20))?
or
T4 W) = Te(v, 0) = 70, 0) + v =T Iy I =l
g2 ) 82‘ as(v) I?
s = , 22
yl (V)”Lz(zl)+ yiov 2, =

with i7 O (12(2;))* a no regret control, and the control u) solution of (16)

is called an adapted low-regret control.

The following proposition shows the existence of an adapted low-regret

control.

Proposition 2.1. There is at least an adapted low-regret control ug O

(L2 (ZO))2 solution of (16).
Proof. See [13]. U

2.3. Characterization of the adapted low-regret control

Y

18) as a

Proposition 2.2. The adapted low-regret control ug = (”gs’ u

solution of (21) is characterized by the unique solution {CY, z¥, BY, @'} of

‘%%‘&Q-%ﬂdf—dz=44—@)mg,
Zg_agsg =0 %*AZ%’:O on %,
Ezz_agsg =0; S%Jﬂi! =0 on 35,
Q(r,v)=0 in Q,
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Y
%—Azzg—(zg)S -€z¢ =0 in Q,
0AzY 0z¢
Zgy - 6V€ = ugs; 6—5+Azg = ”1\{5 on 2,
oAzY 0z
ez¥ - avﬁ =0, sa—vﬁ+Azg=o on %,
z2(0) =0 in Q,
oRY
B _wpL-pY -BL=0 im0
onpY opY
B\S/——a\[fs =0; %+AB¥ =0 on X,
oARY g2
Bl - Ty = S Q) L) on
BL , oy - £ [0(Ce(ud) = 2(0))
Y ABY = Y N on %y,
Bg(o) =0 in Q,
oY
or TR -3V e = -y B in Q.
ong! oY
Y — — _TE Y —
ol v ; . +A@Qf =0 on X,
Y Y
S(p\s/—ag\?s =0; sa—%:+A(pX=0 on 24,
(P\s/(T, v)=0 in Q,

or

Proof. See [13].

145
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2.4. Singular optimality system

In this part, we give the optimality system for the least regret control of

the system (1).

Lemma 2.4. There is a constant C > 0 such that

| ude 12(5,) < €.
| ufe 1,2z, < C.

|2 20y < C.

e (23)
_y" ¢ lp2) =C.
Y
£ %e <cC.
VI 2 ()
Proof. ug being a solution of (20), we have
Jhe(ul) s T (), Ov O (L2 (Z)*
Taking v = 0, we get
Y _ 2 y |12 Y |12
g 2 + No| u + Ny u
I =20 gy * Mol e I+ Ml
2
2 y
~ L £ 0(
+Hluge =it |, +—||ZV||2 ~ 3
L (= ov
( l ( ) Y LZ(ZI)
<l g, =
hence the result. U

Theorem 2.1. The low-regret control u" of problem (1) is characterized

by {Zy’ Zy’ By’ (py}’
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_atY _ ALY -30Y(zY)* = ~(zY - z;) in O,

ot
ongY agY
Yy _ =0 5 Y =
Y
_ag\z) =0 Azg =0 on Zl,
Y(r,v)=0 in Q,
Y
%—Azy—(zyf—&y:o in Q,
Ny _ ozY _
7V - v —Mg; a—v+AZy —uly on Z,
Y
agz_v =0, AY=0 on %y,
zY(0) =0 in Q,
Y
% - ABY -3pY(zY)* =0 in Q,
anpY apY
Yy _22P - ZP_ Y =
B Y, 0; v +0BY =0 on X,
\
_635) =0; ABV =0 on Zl,
BY(0) =0 in Q,

Y
_ai _A(py _3(Zy)2(py = Zy —_ Zd — By in Q’

ot
oAy oY
v — =0 — + Y =

(0} Py 0; N Ag 0 on Z,

ongY

a—\()p =0; A(py =0 on Zl’

o(T,v)=0 in Q,
(py + Noug + Nll/tly = 1/70 - l/tg + 1/71 - Mly in L2(Zo) 24)

Proof. See the proof of Theorem 2.1 of [13]. O
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2.5. Characterization of the no-regret control

We now give the optimality system of no-regret control.

By passing to the limit when y — 0, we obtain the optimality system of

no-regret control given by the following:

Theorem 2.2. The no-regret control i = (i, iiy) of problem (1) is

characterized by the unique solution {C, z, B, @ of'

in Q,

—%—AB—3ZZB=0 in Q.

B=0; %= on X,
in Q,

99 _ 0 on 2,
in Q,

o+ Noﬁo + Nlﬁl =0in LZ(ZO)

Proof. From Theorem 2.1 and passing to the limit when

obtain

Yy - 0, we
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Y —1=0,
B —p=0 (25)
(py N (p = 0
on 2.
Likewise, from (24),
(ug. uf) — (i, &) in L*(Zg) x L*(Zy). (26)
as a result:
azY 0z _ ~ 27)
v v M
on 2.

Of all the above, there is a unique control # characterized by the

solution {Z, z, B, @ of the system (1). O

3. Concluding Remarks

In this paper, we have examined an ill-posed problem with missing data
by combining the method of regularization and adapted least regret control.
Due to the regularization method, we were able to generate information on

2, without which the control of the system was complicated. As the system

is nonlinear, we used the penalization-adapted method which allowed us to

determine the characterization of the no regret control of the system.
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