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Abstract 

We consider the optimal control of a nonlinear elliptic problem with 

missing data (so-called ill-posed problems). Using the notion of          

no-regret and low-regret control, we give a characterization of the 

control for ill-posed problems. More precisely, we study the control  

of Cauchy evolution problems via a regularization approach which 

generates incomplete information. We obtain a singular optimality 

system characterizing the no-regret control for the Cauchy evolution 

problems. 

1. Introduction 

Let ∗∈ NN  and Ω  be a bounded open subset of N
R  with bounded 

10 ΓΓ=Γ ∪  of class .2
C  For ,0>T  we set ( )TQ ,0×Ω=  and 00 Γ=Σ  

( ),,0 T×  ( ).,001 T×Γ=Σ  We consider the following controlled nonlinear 

elliptic problem: 
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where ( )QLz
2∈  is unknown on 1Σ  and ( ) ( ( ))20

2
10, Σ∈= Lvvv  is the 

control. 

We come across such a system while dealing with physical phenomenon 

such as wave propagation and scattering, vibration of the structure, and 

electromagnetic scattering. 

Problem (1) is a Cauchy problem. It is well known that it is ill-posed           

in the sense that it does not admit a solution in general and that existing 

solutions (if any) are unstable. To act on such a system via a control, it              

is worth working with suitable optimization tools. More precisely, we are 

concerned in this paper with the following problem: 
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is a closed subset of ( ( )) ( ),22
0

2
QLL ×Σ  assuming that .∅≠U  We call any 

control-state pair ( ) Uzv ∈,  an admissible couple. J is a strictly convex cost 

functional defined for all admissible control-state couples ( )zv,  by 
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where ( ) ∗
+

∗
+ ×∈ RR10, NN  and ( )QLzd

2∈  is the desired state. We study 

this problem combining the notion of no-regret control and low-regret 

control introduced by Lions [10] to control problem with incomplete data 

with the regularization method of the Laplacian, where we introduce a new 

data: 

.on, 110 Σ=ν∂
∂= g
z

gz  (4) 

So we first consider for any ,0>γ  the low-regret problem: 
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Then we prove that the low-regret control converges to the no-regret 

control solution of the problem: 
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that we characterize by giving the corresponding optimality system. 
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Lions [1] introduced the notions of no-regret control and low-regret 

control in order to control a parabolic equation governed with an operator 

free unknown parameter and unknown initial condition. According to Lions, 

by looking for such a control, one looks for the ‘best possible control’ v 

which does ‘at least well’ and ‘not much worse in the worst situation’ than 

doing nothing. The notions were then applied to control some models with 

incomplete data, including models involving fractional derivative in time. 

We refer for instance to Lions [2, 3], Nakoulima et al. [4-7], Jacob and 

Omrane [8], and Mophou [9]. 

2. Low-regret Control and No-regret Control 

Due to the ill-posedness of the Cauchy elliptic problem, it is impossible 

to solve it directly. For this, we introduce the notion of regularization. Our 

method consists in regularizing (1) into an elliptic problem of incomplete 

data. For ,0>ε  we consider the regularized problem: 
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where ( ) ( ( )) ., 2
1

2
10 Σ∈= Lggg  We then make the following remark: 

Remark 1. For every fixed 0gε  and ,1gε  we assume the existence of a 

unique solution to (7). Indeed, in the following subsection, 0gε  and 1gε  are 

considered as data perturbations. 

To come back to the original Cauchy problem, we make the following 

change of variable z∆=η  and put .0=ε  Then, we obtain 
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and 

 .on; 010 Σ=η+ν∂
∂=ν∂

η∂− v
z

vz  (9) 

From (8), we have 0=η=ν∂
η∂

 on .1Σ  Using the unique continuation  

of Mizohata [12], we deduce that 0=η=ν∂
η∂

 on .0Σ  Hence, condition (9) 

becomes 

 ,on; 010 Σ=ν∂
∂= v
z

vz  (10) 

that is, the same conditions of the original problem. 

Lemma 2.1. Consider the cost functional: 
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Under the assumptions of the previous section, for all ( ( ))2
0
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Proof. We refer to [13]. □ 
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We use a method developed in [13] to obtain the following result: 

Lemma 2.2. Under the assumptions of the previous section, consider the 

function εJ  defined by (11). Then for all ( ( ))2
0

2 Σ∈ Lv  and ( ( )) ,2
1

2 Σ∈ Lg  

( ) ( )gJgvJ ,0, εε −  
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where ( )vεζ  is a solution of: 
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with ( ) ( ) ( ),0ζ−ζ= vvS  and 
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To make sense of the following minimization problem: 
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we consider the set: 
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2.1. Low-regret control 

To make solving the problem (16) a bit easier, Lions introduced the 

expressions 
( )

2
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g  where γ  denotes a relaxation 

parameter and is strictly positive ( ).0>γ  Thus 
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The control u satisfying (18) is called a low-regret control. 

The concept of ≪ low-regret control ≫ depends on γ  and the norm 

.g  



Thomas TINDANO et al. 142 

It is interpreted as an approximation of no-regret control. 

Indeed, with low-regret control, we admit the possibility of making a 

control choice u slightly catastrophic than the ground state with a margin of 

error not exceeding 
( )

.
2

1
2 Σ

γ
L

g  

Lemma 2.3. Consider the function εJ  given by (11). Then for all ∈v  
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0
2 ΣL  the relaxed problem (16) becomes: 
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Proof. Using (13), 

( ) ( )gJgvJ ,0, εε −  

( ) ( )0,00, εε −= JvJ  

( ) ( ) ( ) ( ) ( )
( )

.,0,02

1
2

1
2 10 













εν∂

ζ∂−ν∂
ζ∂+εζ−ζ+

Σ

γ
ε

γ
ε

Σ
γ
ε

γ
ε

L

L gvgv  

So, 

( ( ))
( ( ) ( )

( ) ( )
)2

1
2

0
1

2
1

2
2

1
2

,0,sup
ΣΣεε

Σ∈
γ−γ−−

LL
Lg

gggJgvJ  

( ) ( )0,00, εε −= JvJ  

( ( ))
( ) ( ) ( ) ( ) ( )

( )






εν∂

ζ∂−ν∂
ζ∂+εζ−ζ+

Σ

γ
ε

γ
ε

Σ
γ
ε

γ
ε

Σ∈ 1
2

1
2

2
1

2
10 ,0,0sup2

L

L
Lg

gvgv  

( ) ( )
.

22
2

1
2

0
1

2
1

2 




γ−γ−
ΣΣ LL

gg  



Optimal Control of a Nonlinear Elliptical Evolution Problem … 143 

According to the Fenchel transformation, 

( ( ))
( ) ( ) ( ) ( ) ( )

( )






εν∂

ζ∂−ν∂
ζ∂+εζ−ζ

Σ

γ
ε

γ
ε

Σ
γ
ε

γ
ε

Σ∈ 1
2

1
2

2
1

2
10 ,0,0sup

L

L
Lg

gvgv  

( ) ( ) 




γ−γ−
ΣΣ

2
1

2
0

1
2

1
2 22 LL

gg  

( ) ( )
( )

( ) ( )
( )

.0
2

0
2

22
2

2

1
21

2

Σ

γ
ε

γ
ε

Σ ν∂
ζ∂−ν∂

ζ∂
γ

ε+ζ−ζγ
ε=

L
L

vv  

We thus obtain the result. □ 

Finally, we can formulate the problem (16) as follows: 

For all ,0>γ  find ( ( ))20
2 Σ∈γ

ε Lu  such that: 
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Problem (20) is a low-regret problem and its solution is called                

low-regret control. 

Remark 3. In contrast to the linear case, the function γ
εJ  is not convex. 

Therefore, we do not necessarily have the uniqueness of .εu  Moreover, we 

are not sure that εu  converges in .O  Thus, we use the penalization-adapted 

method defined by Lions in [11] for the search for low-regret control. 

2.2. Existence of adapted low-regret control 

In this part, we are interested in finding a solution of the following 

minimization problem: 
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with ( ( ))2
1

2~ Σ∈ Lu  a no regret control, and the control γ
εu  solution of (16) 

is called an adapted low-regret control. 

The following proposition shows the existence of an adapted low-regret 

control. 
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2 ΣL  solution of (16). 

Proof. See [13]. □ 
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Proof. See [13]. □ 
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2.4. Singular optimality system 

In this part, we give the optimality system for the least regret control of 

the system (1). 

Lemma 2.4. There is a constant 0>C  such that 
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hence the result. □ 

Theorem 2.1. The low-regret control γ
u  of problem (1) is characterized 

by { },,,, γγγγ φβζ z  
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Proof. See the proof of Theorem 2.1 of [13]. □ 
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2.5. Characterization of the no-regret control 

We now give the optimality system of no-regret control. 

By passing to the limit when ,0→γ  we obtain the optimality system of 

no-regret control given by the following: 

Theorem 2.2. The no-regret control ( )10
~,~~ uuu =  of problem (1) is 

characterized by the unique solution { }φβζ ,,, z  of: 
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Proof. From Theorem 2.1 and passing to the limit when ,0→γ  we 

obtain 
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on .0Σ  

Likewise, from (24),  
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as a result: 
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on .0Σ  

Of all the above, there is a unique control u~  characterized by the 

solution { }φβζ ,,, z  of the system (1). □ 

3. Concluding Remarks 

In this paper, we have examined an ill-posed problem with missing data 

by combining the method of regularization and adapted least regret control. 

Due to the regularization method, we were able to generate information on 

1Σ  without which the control of the system was complicated. As the system 

is nonlinear, we used the penalization-adapted method which allowed us to 

determine the characterization of the no regret control of the system.  
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