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ANALYSIS OF GENERALIZED FINITE CONTINUOUS 
RIDGELET TRANSFORMS WITH SIMPLY SUPPORTED 

RECTANGULAR KIRCHHOFF PLATES 

 

Abstract 

This work presents the application of generalized finite continuous 
Ridgelet transform (GFCRT). The solution of Kirchhoff plates with 
rectangular and simply supported obeying Dirichlet boundary 
conditions is demonstrated using GFCRT. The inversion formula when 
applied to the stated problem represents an algebraic solution. In the 
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concluding section, the obtained numerical results are discussed with 
uniformly distributed patch load, general distributed load and point 
load. 

1. Introduction 

The continuous Ridgelet transform for a two-variable function yxf ,  

was given in [2]. In [6], authors explored Ridgelet transform in the 
distributions sense. The (CRT) was developed for Schwartz distribution 
using classical Ridgelet transform on the space of square integrable 
Boehmians in [4]. 

Consider a ridge function or ridgelet 
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  (i) a; the scale of the ridge function, 
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The classical finite continuous Ridgelet transform was defined in [3] on 
ddcc ,,  as follows: 

yxfbaqp ,,,,  

d

d

c

c
dxdyabd

aqy
c
apxyxfcd

a .,4

21
 (2)  



Analysis of Generalized Finite Continuous Ridgelet Transforms … 119 

The inversion formula of (2) is given by 
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The inversion formula due to kernel method in distributional sense is 
also analyzed. The classical finite continuous Ridgelet transform was 
extended to generalized functions on certain spaces in [13] with the inversion 
formula in distributional sense by using kernel method as: 
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The treatment of elastic plates was analyzed in [8]. Classical and shear 
deformation plate theories are thoroughly discussed with their analytical and 
numerical solutions for bending, buckling, and natural vibrations. In [9], 
using the finite Fourier sine transform method, authors solved the boundary 
value problem for Kirchhoff plates that was supported by simply supported 
rectangular beams. The numerical results in [10] confirmed that the Radon 
transform formulation is valid when applied to the vibrations of rectangular 
thin plates. Bending of fully clamped orthotropic rectangular thin plates 
solution was presented in [11] using finite continuous Ridgelet transforms 
subjected to the loadings. Heat conduction in an inverted cone domain was 
considered by the authors in [12]. 
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The purpose of this paper is to solve several partial differential equations 
in mathematical physics, such as simply supported rectangular Kirchhoff 
plates, using the developed GFCRT technique. Also, the methodology is 
supported by checking validity of the formulation. 

2. Methodology 

The terminology and notation used in this article are from [1]. Consider 
.,, 1111 ddccI  From [3], we get 

,cossin 22
,, yxyx  (6) 

where 2
xx D  and ;2

yy D  dc,  are real constants. 

The operational formula of GFCRT for every ...,2,1,0k  from [13] is 

given as 
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3. GFCRT to Simply Supported Rectangular Kirchhoff Plate 

Consider the following equation: 
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which represents the differential equation of Kirchhoff plate, where 

(1) yxp ,  - load distributed transversely. 

(2) 2

3

112
EhD  - flexural rigidity. 
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(3) E - Young’s modulus. 

(4) h - thickness. 

(5)  - Poisson’s ratio. 

(6) yx,  - transverse deflection. 

For ,, dydcxc  the boundary conditions of (8) are 

,0, 2

2
cx

cx
cx

cx
x

yx  (9) 

.0, 2

2
dy

dy
dy

dy y
yx  (10) 

Transverse distribution load :, yxp  

Using GFCRT from (4) to both sides of equation (8), it follows that 
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Using (9), it follows that 
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From (10), it follows that 
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Also, 
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From (9) and (10), we have 
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By inverse GFCRT (6), we have 
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(i) Load 0, Pyxp  concentrated within the plate at yx ,  

Consider 

., 0 yxPyxp  (17) 

The Dirac delta function is represented by yx  with point load 

applied on the plate along the coordinates  and  and 0P  is a constant. 

Considering the plate domain ;cc  dd  and applying 

GFCRT to (8), we obtain 
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Thus, we obtain (5) as 
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The bending moment is represented as 

,yyxxxx DM  (20) 

.xxyyyy DM  (21) 

For ,2ax  ,2by  the change in deflection and loading along 

the point load p at the centre of the plate becomes: 
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and 
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(ii) For the region ,, 1010 dydcxc  the uniformly distributed 

patch load 

Due to uniformly distributed patch load, the plate deflection over the 
region 1010 , dydcxc  is given by 
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and  
., 102101 ddtcct  

And bending moment displacement equations are 
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(iii) 0, pyxp  uniformly distributed over the plate 

The plate deflection is from [7] as follows: 
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4. Numerical Results and Discussion 

The solution of simply supported rectangular Kirchhoff plates with 
certain boundary condition has been observed using the newly invented 
generalized finite continuous Ridgelet transform. The obtained result is 
discussed under general distributed load ,, yxp  uniformly distributed 
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point load P at ,  over a given area and the entire plate. The deflection 

functions yx,  are shown in (16), (19), (22), (25) and (30) which 

conclude that yx,  is rapidly convergent. The numerical results are 

compared with [7] as shown in Tables 1, 2 and 3 with comparison graphs 1, 2 
and 3, respectively. 

Table 1. For simply supported rectangular Kirchhoff plates with loads 
distributed evenly at ,0625.0a  deflection and bending moment 
coefficients 

d/c [7]  xxM  [7] xxM  yyM [7] yyM  

  Present study  Present study  Present study 

1.0 4.07 310  4.1 310  0.0479 0.05 0.0479 0.05 

1.1 4.85 310  4.9 310  0.0554 0.06 0.493 0.49 

1.2 5.64 310  5.6 310  0.0627 0.06 0.0501 0.05 

1.3 6.83 310  6.8 310  0.0694 0.07 0.0503 0.05 

1.4 7.05 310  7.1 310  0.0755 0.08 0.0502 0.05 

1.5 7.724 310  7.7 310  0.0812 0.08 0.0499 0.05 

1.6 8.30 310  8.3 310  0.0862 0.09 0.0492 0.05 

1.7 8.83 310  8.8 310  0.0908 0.09 0.0486 0.05 

1.8 9.31 310  9.3 310  0.0948 0.09 0.0479 0.05 

1.9 9.74 310  9.7 310  0.0985 0.10 0.0471 0.05 

2 10.13 310  10.1 310  0.1017 0.10 0.0464 0.05 

3 12.23 310  12.2 310  0.1189 0.12 0.0407 0.04 

4 12.82 310  12.8 310  0.1235 0.12 0.0384 0.04 

5 12.97 310  13.0 310  0.1246 0.12 0.0375 0.04 

 13.021 310  13.0 310  0.1250 0.12 0.0375 0.04 
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Figure 1. :
2

D
paF  comparison between [7] and present work. 

Table 2. Convergence analysis for moments of deflection and bending with 
uniform load at the centre of square Kirchhoff plates having simple support 
at 0625.0a  

No. of terms [7]  xxM [7] xxM  yyM [7] yyM  

  Present study  Present study  Present study 
1 0.416 0.4 5.34 5.3 5.34 5.3 
2 0.405 0.4 4.69 4.4 4.69 4.7 
3 0.406 0.4 4.86 4.9 4.94 4.9 
4 0.406 0.4 4.81 4.8 4.90 4.9 

Exact 0.406 0.4 4.79 4.8 4.79 4.8 

 

Figure 2. :10 2
4

D
pa

 comparison between [7] and present work. 



Analysis of Generalized Finite Continuous Ridgelet Transforms … 131 

Table 3. Simply supported rectangular Kirchhoff plates under point load at 
the centre 

d/c [7] present work 
1.0 0.01160 0.011 
1.2 0.01353 0.013 
1.4 0.01464 0.014 
1.6 0.01570 0.015 
1.8 0.01620 0.016 
2 0.01651 0.016 

 

Figure 3. Simply supported rectangular Kirchhoff plates under point load at 
the centre: comparison between [7] and present work. 

Example 1. With  as standard deviation, the symmetric Gaussian 
probability density function is as follows: 
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Figure 4. Plot of the symmetric Gaussian probability density function 

2

22

2
22

1
yx

e  without GFCRT. 

 

Figure 5. 3D plot of symmetric Gaussian probability density function 

2

22

2
22

1
yx

e  after application of GFCRT. 

Example 2. If nuts and bolts sold per month for hardware manufacturer 
are represented by x and y, respectively, then the profit function is given by 

.2316, 22 yxyxf  (33) 

GFCRT of (33), using (4) for x  and y  at ,0p  

1q  and ,dc  

.9568.784,2316
21

22 abd
aqy

c
apx

cd
ayx  

 (34) 
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Figure 6. Plot of the profit function for a hardware manufacturer 
22 2316 yx  without GFCRT. 

 
Figure 7. 3D plot of the profit function for a hardware manufacturer 

22 2316 yx  after application of GFCRT. 

5. Conclusion 

In this paper, the GFCRT is used to develop analytical flexural solutions 
for Kirchhoff plates that are simply supported and subjected to various loads. 
The comparison graph and numerical data demonstrate the validity of the 
formulation. The GFCRT is also calculated for symmetric Gaussian 
probability density function and profit function for a hardware manufacturer. 
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