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Abstract

This work presents the application of generalized finite continuous
Ridgelet transform (GFCRT). The solution of Kirchhoff plates with
rectangular and simply supported obeying Dirichlet boundary
conditions is demonstrated using GFCRT. The inversion formula when

applied to the stated problem represents an algebraic solution. In the
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concluding section, the obtained numerical results are discussed with

uniformly distributed patch load, general distributed load and point
load.

1. Introduction

The continuous Ridgelet transform for a two-variable function f(x, y)

was given in [2]. In [6], authors explored Ridgelet transform in the
distributions sense. The (CRT) was developed for Schwartz distribution

using classical Ridgelet transform on the space of square integrable
Boehmians in [4].

Consider a ridge function or ridgelet

-1
1+ Ze—((panX/C)+(qany/d)—b)/a
p.q=1

= x(((panx/c) + (qany/d) - b)/a) (1
converging to %[f (-c,—d)+ f(c, d)] with parameters:

(i) a; the scale of the ridge function,

(ii) b; location of the ridge function,
(iii) [(panx/c)+ (qamy/d)]; its orientation,

where a, b € R.

The classical finite continuous Ridgelet transform was defined in [3] on
[-c, c]x[-d, d] as follows:

ER(p,q,a,b)f(xa y)

_ a;g ’ [ _dd | _Cc F(x, y)x(((“acpx ' “‘qu) - b) /a)dxdy. %)
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The inversion formula of (2) is given by

YR_1(“]{(p,q,a,b)f(Xa y))
—all? Z R(p,q.a,b)F (X y)x((b - (@ + @D/&j. 3)
p,q=1

The inversion formula due to kernel method in distributional sense is
also analyzed. The classical finite continuous Ridgelet transform was
extended to generalized functions on certain spaces in [13] with the inversion

formula in distributional sense by using kernel method as:

R(p.a.abfxy)= <f(X), a;f x(((nipx = m’:\qu) - b)/a)>, )

where f(x,y)= f(X) and X =(x, y).

Using [5], the inversion formula (4) is defined as

Q P
_ 1 -1/2
o) =g lim, 20 & ™ an (. Y)

A e

The treatment of elastic plates was analyzed in [8]. Classical and shear

VP = Q.

deformation plate theories are thoroughly discussed with their analytical and
numerical solutions for bending, buckling, and natural vibrations. In [9],
using the finite Fourier sine transform method, authors solved the boundary
value problem for Kirchhoff plates that was supported by simply supported
rectangular beams. The numerical results in [10] confirmed that the Radon
transform formulation is valid when applied to the vibrations of rectangular
thin plates. Bending of fully clamped orthotropic rectangular thin plates
solution was presented in [11] using finite continuous Ridgelet transforms
subjected to the loadings. Heat conduction in an inverted cone domain was
considered by the authors in [12].
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The purpose of this paper is to solve several partial differential equations
in mathematical physics, such as simply supported rectangular Kirchhoff
plates, using the developed GFCRT technique. Also, the methodology is
supported by checking validity of the formulation.

2. Methodology

The terminology and notation used in this article are from [1]. Consider

| =[-c¢;, ¢]x[~dy, di]. From [3], we get
Qy y.0 = (sin” 0)Qy — (cos® 0)Qy, (6)
where Q, = D)% and Qy = D)Z,; C, d are real constants.

The operational formula of GFCRT for every k = 0, 1, 2, ... from [13] is

(G

= [(- np)* sin? Bcos?* 0 — (- n3)* cos? Osin* 0]

() ))

3. GFCRT to Simply Supported Rectangular Kirchhoff Plate

given as

Consider the following equation:

oM (x, y) , OM(xy) , , 0N (x y) _ p(x Y) @®
o 8y4 ax28y2 - D

which represents the differential equation of Kirchhoff plate, where

(1) p(x, y) - load distributed transversely.

Eh?

)D=—1
@ 12(1-p?)

- flexural rigidity.
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(3) E - Young’s modulus.
(4) h - thickness.

(5) u - Poisson’s ratio.
(6) W(X, y) - transverse deflection.

For —c < x<c,—d <y <d, the boundary conditions of (8) are

o*y
LP(X y)|x:—c = 8X2 i—gc =0, ©)

_8‘I’|y

¥ VI = 0. (10)

Transverse distribution load p(X, y):

Using GFCRT from (4) to both sides of equation (8), it follows that

oty +2 oty N oty a2 X((( mapx naqy) B b) aj
ox? 8x28y2 ay4 > 4cd c d

_ % <p(x, o) a4_clf X(((nacpx . na(quyj _ bj /a)>. (an

Hence
c oty mapx naqy) ) )
4cd J Ic o ((( g )P /a dxdy
4
= (%) R(p.q.a,0)F(X ¥)

a V2 b2 cd (pp —% 0%y 82‘P %
+—I — € 5 Ix=c - —cl|e @ dy
4cd —d OX ox?

-1/2,-b/a .d 3| _PmX _ prx qny
a‘’'e " P c c d
+ 4cd I—d( ) {e Y(X, Y)lx=c —€ Y(x, y)|x=—c}e dy.
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Using (9), it follows that

oo (7 ) o) o

pr\*
= (Tj ER(p’q’a’b)‘P(x, y), (12)

where

905 )= 05 ), S o (22 20 ) ]

is GFCRT of W(X, ).

Thus
a V2 ¢ 84 mapx  maqy
oo LA ) o)y

4
= [%) ER(p,q,a,b)\lj(x, y)

-1/2,-b/a ¢ L) gy 2 prx
M C I =T e T e
c —c ] oy
-1/2,-b/a ¢ 3 9w _any prx
a‘e*” ar d 2T c
+ 4cd I—C( d j € lI,(X’ y)|y:d e \P(X, Y)|y:_d ]e dx.

From (10), it follows that

-1/2 c A4

a 0 ‘P napx maqy \

i | I5 (75 252 ) o) fa oy

4
:((L_n) R(p.q.ab) P (X Y). )
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Also,
L S “aqy) - b) /a) dxdy

4Cd-[ Icaxay (((C d

2 2
z(ﬂ) (%) R(p.g.ab) ¥ (X Y)

C
-1/24b X2 _PmX 2 any
+a/e/a[E)J‘d e_CalP|_—e ca\P|_ e d dy
4cd c JJ_d oy X=¢C 5 Ix=—c
-1/2 b/a 2 c| 9y _qry prx
a &’ (Pryrqr d e d
] P P, P
From (9) and (10), we have
napx _maqy)
4Cd.[ Jcaxay ((( c ' d j bj/a)dXdy
:(T) (qnj R(p.q.a.b) V(X Y). (14)
Using (12)-(14), (11) gives
(15)

((%j (%lnj sz(pqab)‘f’(x y)——ﬁ(pqab)p(x ),

where

(=)

R(p,q,a,b) P y)=<p(x, y), e

is GFCRT of p(x, y).
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By inverse GFCRT (6), we have

-1/2
Y(x, y)= {?D/ ] lim

TC4 Q,P—>w

g ol PE
R ()

(i) Load p(x, y) = P, concentrated within the plate at x = &, y = n

Consider

p(x, y) = Pyd(x = €)3(y — n). (17)

The Dirac delta function is represented by 8(x — £)8(y —n) with point load

applied on the plate along the coordinates & and n and P, is a constant.

Considering the plate domain —¢c <& <c¢; —d <n<d and applying
GFCRT to (8), we obtain

SR(p,q,a,b)lP(Xa y)

Po<8(x = &)3(y —m), aé;cl(/f x((( nipx + nzzlqyj - b) /a)>
ol (3]

which implies

ol ) o))
ol (£ +(5]

ER(p,q,a,b)l{’(xa y) = (18)
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Thus, we obtain (5) as

Y(x, y)
(B )
4acdDr” ) Q. P

gl o)
i BECE

The bending moment is represented as

Myx = =D(Pyx + H\Pyy)a (20)

Myy = ~D(Fyy + 1Py ). @1)

Yy

For x =& = a/2, y =n=Db/2, the change in deflection and loading along

the point load p at the centre of the plate becomes:

a b PO
2 2 4acdDr*

where p,q=1,3,5....

From (20) and (21), we obtain

o A pe o)
L (GRO)

(23)
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RGN s o)
S pq((gz " (%jz]

(ii) For the region ¢, < x < ¢, dy < y < d;, the uniformly distributed
patch load

24

Due to uniformly distributed patch load, the plate deflection over the
region Cy < X < ¢, dy <y < d; is given by

P(x, y)

oo A )l (P )

) (25)

(g 5l T
SRR

where

e )8
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and
t =(Co—¢) t =(do—dy).

And bending moment displacement equations are

Jo (- (22« 2] )

3 (26)
WA
Mo (Cdp724JQ Pee
sp @ AT

S e

(iii) p(x, y) = po uniformly distributed over the plate

The plate deflection is from [7] as follows:

P(x, y)

Q P
(4acanJ IE”OQZ:Z

1 p=1

I ) Gl G )
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, panx  gamy
ZQ ZP qux((b—( " D/ a)
Po . c d
= 1 2
[aDnJQaE’rE’OO = 4= 2 22 .
=1 p=l P q
PAe) Tld

b
Sphq = €@ sinh prsinh g

where

The bending moment distribution becomes
Myx = (&j lim
cdr? ) Q. P—w

2 A8 -7 )

; o . 9
T () ()]

My = (cgfﬂjo,éw
s gl@ AW

TH (o))

4. Numerical Results and Discussion

The solution of simply supported rectangular Kirchhoff plates with
certain boundary condition has been observed using the newly invented
generalized finite continuous Ridgelet transform. The obtained result is

discussed under general distributed load p(X, y), uniformly distributed
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point load P at (&, n) over a given area and the entire plate. The deflection
functions W(X, y) are shown in (16), (19), (22), (25) and (30) which
conclude that W(X, y) is rapidly convergent. The numerical results are

compared with [7] as shown in Tables 1, 2 and 3 with comparison graphs 1, 2

and 3, respectively.

Table 1. For simply supported rectangular Kirchhoff plates with loads
distributed evenly at a = 0.0625, deflection and bending moment

coefficients
d/e ¥ [7] N My [7] M Myy [7] Myy
Present study Present study Present study

1.0 | 407x107 4.1x1073 0.0479 0.05 0.0479 0.05
L1 | 485x107° | 4.9x1073 0.0554 0.06 0.493 0.49
12 | 5.64x107° 5.6x107 0.0627 0.06 0.0501 0.05
13 | 6.83x107° 6.8x107 0.0694 0.07 0.0503 0.05
1.4 | 7.05x107° 7.1%x1073 0.0755 0.08 0.0502 0.05
15 [7.724%x1073 | 7.7x1073 0.0812 0.08 0.0499 0.05
1.6 | 830x107° 8.3x1073 0.0862 0.09 0.0492 0.05
1.7 | 8.83x107° 8.8x1073 0.0908 0.09 0.0486 0.05
1.8 | 931x1073 93x107 0.0948 0.09 0.0479 0.05
1.9 | 9.74x1073 9.7x107 0.0985 0.10 0.0471 0.05
2 10.13x1072 | 10.1x107 0.1017 0.10 0.0464 0.05
3 1223x107 | 12.2x1073 0.1189 0.12 0.0407 0.04
4 12.82x107 | 12.8x1073 0.1235 0.12 0.0384 0.04
5 12.97x107 | 13.0x107 0.1246 0.12 0.0375 0.04
© [13.021x1073| 13.0x1073 0.1250 0.12 0.0375 0.04
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Deflection and Bending moment coefficient for
simply supported rectangular Kirchhoff plates

0.014
0.012

0.01
0.008
0.006
0.004

0.002

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

——[7] = [Present study]

pa’

Figure 1. ¥ = F ——: comparison between [7] and present work.

D

Table 2. Convergence analysis for moments of deflection and bending with

uniform load at the centre of square Kirchhoff plates having simple support

at a = 0.0625

No. of terms | ¥ [7] ¥ My [7] M yx My, [7] My
Present study Present study Present study

1 0.416 0.4 5.34 53 5.34 53
2 0.405 0.4 4.69 44 4.69 4.7
3 0.406 0.4 4.86 4.9 4.94 49
4 0.406 0.4 4.81 4.8 4.90 49
Exact 0.406 0.4 4.79 4.8 4.79 4.8

Figure2. ¥ =

Convergence study for Deflection and Bending
moments at the centre of simply supported
square Kirchhoff plates

0.42

0.415
0.41
0.405

0.4

0.395

0.39
1 2 3 4 5

— 7] =W [Present study]

pa’

D

x1072: comparison between [7] and present work.
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Table 3. Simply supported rectangular Kirchhoff plates under point load at

the centre
d/ic Y [7] Y present work
1.0 0.01160 0.011
1.2 0.01353 0.013
1.4 0.01464 0.014
1.6 0.01570 0.015
1.8 0.01620 0.016
2 0.01651 0.016

Simply supported rectangular Kirchhoff
plates under point load at the centre

0.018

0.016
0.014
0.012

0.01
0.008
0.006
0.004
0.002

1 2 3 4 5 [4]

— W [7] W [Present work]

Figure 3. Simply supported rectangular Kirchhoff plates under point load at

the centre: comparison between [7] and present work.

Example 1. With o as standard deviation, the symmetric Gaussian

probability density function is as follows:

¢4y
fy)=——se 20 . 31)
271G

GFCRT of (31), using (4) for —n<x<m and —n<y<7n at o=1,
p=0,g=1landc=d=m,

1 SR 0
2 @ mapx maqgy ) _
27tGze 1o x((( R ) b)/a) 0.0153774. (32)
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Figure 4. Plot of the symmetric Gaussian probability density function
(4y?)

12 e 20 without GFCRT.
271G

Figure 5. 3D plot of symmetric Gaussian probability density function
(Cry?)
e 207 after application of GFCRT.

2162

Example 2. If nuts and bolts sold per month for hardware manufacturer
are represented by X and Y, respectively, then the profit function is given by

f(x, y)=16-(x-3)> = (y -2)% (33)

GFCRT of (33), using (4) for —n<X<m and —n<y<m at p=0,
g=land c=d =,

<(16 ~(x=3)* = (y-2)%), a;f x((( “ipx + “‘qu) - bj /a)> — 78.9568.

(34
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Figure 6. Plot of the profit function for a hardware manufacturer

16 — (x —3)> = (y — 2)* without GFCRT.

Figure 7. 3D plot of the profit function for a hardware manufacturer

16 — (x — 3)> = (y — 2)* after application of GFCRT.

5. Conclusion

In this paper, the GFCRT is used to develop analytical flexural solutions
for Kirchhoff plates that are simply supported and subjected to various loads.
The comparison graph and numerical data demonstrate the validity of the
formulation. The GFCRT is also calculated for symmetric Gaussian
probability density function and profit function for a hardware manufacturer.
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