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Abstract

The distributed optimal control problem of a highly nonlinear coupled

system of reaction-diffusion equations is investigated in the study.

Normal cell density, tumor cell density, excess H * jon concentration,
and chemotherapy drug concentration are all represented by partial
differential equations (PDEs) in the coupled system of acid-mediated
tumor invasion model. It is a usual factor to formulate an
optimal control problem by introducing control interventions while
considering the tumor invasion model with drug chemotherapy.
However, in our model, we consider a constant drug injection rate as a
control variable based on biological motivation. The major goal of our
optimal control problem is to reduce the overall amount of medicine
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supplied while minimizing cancer cell proliferation. First, we prove
the existence of solutions to the direct problem using the Faedo-
Galerkin approximation method, deriving a priori estimates, and then
passing to the limit in the approximate solutions using monotonicity
and compactness arguments. We introduce a functional to minimize
and to establish the existence of optimal control for the proposed
optimal control problem. Using the Lagrangian framework, we derive
the adjoint problem and necessary optimality condition associated
with our problem. Finally, we prove the existence of weak solutions to

the adjoint system.

1. Introduction

Cancer is a complex disease that develops into one of the causes of
death in humans as of uncontrolled cell development. It can also spread
to other organ parts. By creating lumps or masses of aberrant cells, cancer
cells engage in continual cell division and disrupt organ processes.
Chemotherapy, sometimes known as chemo, is a type of cancer treatment
used to kill or limit the growth of cancer cells. During treatment, it has
harmful side effects and also affects normal and healthy cells. Chemotherapy
can stop cancer cells from multiplying and invading. Cells that are normal
or non-cancerous do not spread throughout the body, but cancer cells
are diffusion. As a result, to make a diagnosis and treat cancer, it is vital
to understand how it progresses. Many researchers have constructed
mathematical models to understand and determine how cancer cells evolve
and respond to therapy in the literature; for example, see [2, 3, 8, 14, 15] and

its references.

The acid-mediation hypothesis, in which tumor cell invasion is enhanced
by acidification of the region around the tumor-host interface induced by
aerobic glycolysis, is discussed in [23]. This acid kills normal cells and
spreads the tumor cells to other parts of the body. With a series of reaction-
diffusion equations concerns the interaction between the tumor, host,
and acid, this model was first investigated theoretically by [8]. Holder
and Rodrigo investigated the mathematical model for acid-mediated tumor
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invasion with chemotherapeutic intervention in [22] with a homogeneous

population and with a spatially heterogeneous population in [21].

In this paper, we investigate a highly nonlinear coupled cancer invasion
model. According to [21], the coupled system of equations defining the

. . . + . . .
interactions of normal cells, malignant cells, excess H ~ ions, and medication
concentration is modelled. The following is a nonlinear reaction-diffusion

model that arises in acid-mediated tumor invasion with nonlinear diffusion:

Oty = O L(Dy (1) Oy ) + rug (1 = wy = Quy) = yyugus in Or
sy = O LDy (uz)Oup) + ryup (1 —uy = Qouy ) = Youtpuy  in QO "
0;u3 = D3lAusz + ruy — msuz in Or
O;uy = Dyluy + rp — mguy = Yaupuy in Or

with initial and boundary conditions

u;(x, 0) = ui,o(x) in Q,

al/li
on

=0,i=1,..4in 3,

where QO = Qx(0,T), Zp =0Q % (0, T), Q is an open bounded domain
in RY with boundary dQ and n is the unit normal vector on 0Q.

Normal cell density u(x, 7), tumor cell density u,(x, t), excess H' ion
concentration u3(x, t), and chemotherapeutic drug concentration uy (x, t)
are the four physical variables involved in acid-mediated tumor cell invasion
model with spatial and time evolution. The positive constants #, 7, 73,
Oy, 0o, Vi, Y2, Y4, my and my are shown in Table 1. When considering

mathematical modelling of cancer growth with medication chemotherapy,
it is common to frame an optimal control problem with the objective of
minimizing the total amount of drug administered. We use the control as 7
to reduce tumor burden while decreasing total drug administered, based on

biological motives and research such as [3] and [19], and by keeping the
biomedical goal in mind.
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Table 1. Symbols and description of parameters

Symbol Description
uj Density of normal cell
up Density of tumor cell
u3 Excess H' ion concentration
U4 Chemotherapy drug concentration

Dy(uy), Dy (uy) Density-dependent diffusion coefficients

D3, Dy Constant diffusion coefficients
T Time
uro0 Initial normal cell
U3 0 Initial tumor density
u3,0 Initial H* ion concentration
u4,0 Initial drug concentration

Normal cell growth rate

n Tumor cell growth rate

(o8] Normal cell death due to tumor cell

ar Tumor cell death due to normal cell

Yi Normal cell killed by H * jons

Y2 Tumor cell killed by drug

3 H” ion production rate

m3 H™ ion removal rate

my Chemotherapy removal rate

Y4 Chemotherapy removal by tumor interaction
Ui Chemotherapy drug infusion

In this model, r; = ¢ = ¢(x, t) is the control variable when dealing with

the optimal control system and u,-,o(x), i =1,..., 4 represents the initial

conditions of unknown variables u;, i =1, ..., 4, respectively. We have
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also assumed Neumann boundary conditions on the X7 boundary. The

mathematical analysis of an optimal control problem constrained by the
system of PDEs (1) is discussed in this work. The study of mathematical
analysis of optimal control problems constrained by reaction-diffusion
equations has attracted attention in recent years [9, 11, 16-19] and its
references. In electro cardiology, Ainseba et al. investigated an optimal
control problem constrained by PDEs [1]. The optimal control problem for
the Keller-Segel equations to control the aggregate of cells by chemical
concentration was investigated. In addition, the existence and uniqueness of
the weak solutions have been established in [12, 13], and the references

therein.

The existence of solutions and the optimal control problem for the
cancer invasion models have been studied in [4, 19, 20], and a large number
of references therein. Apart from the theoretical contributions mentioned
above, the literature also encompasses some numerical investigations on
optimal control problems for the cancer invasion system, for example, see
[5, 6, 9-11, 17] and its references. Aside from the existing literature above, it
should be highlighted that, to the best of the author’s knowledge, there is no
work available in the literature for optimal control problems constrained by a
system of PDEs (1) with nonlinear diffusion operators. As a result, we
attempted to investigate the optimal control problem considering PDEs of

the form (1) in this paper.

The paper is structured as follows: We state the basic theorem and
introduce the approximation problem for the original system (1) in Section 2.
The Faedo-Galerkin method is then used to determine the existence of weak
approximation system solutions [7]. We investigate the existence of optimal
control in Section 3 and derive the adjoint problem and first-order optimality
conditions. Finally, we obtain the existence of a weak solution of the adjoint

problem. Conclusion is provided in Section 4.
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2. Existence of Solutions for Direct Problem
In this section, we prove the existence of solutions to the direct problem.

To do this, we establish an approximation problem for (1) to verify the

existence of weak solutions for (1).
Furthermore, throughout the work, we refer to C as the generic constant.

For simplicity, we are considering following equivalent form of the
system (1):

0,y — O 0Dy () Ouy ) + Fy(uy, up, uz) = Ry in Or
0y = O LDy (up)Ouy) + Fy(uy, up, ug) = ryup  in Qy

: 2
6,u3 - D3Au3 = Uy — m3uj3 in QT

0,uy — Dyluy + Fyuy, ug) = c = myuy in QOr
where
Fi(uy, up, u3) = Hup + oy + Yiuuz,
Fy(uy. uy. 13) = ryu3 + nyQlauity + Yattpity,
Fy(up, ug) = Yaupuy.

Remark 1. To establish the weak solutions of the given degenerate

reaction-diffusion system (1), we assume that the following hypotheses hold

true. The Carathéodory functions D;(s)Z : R x RY _ R are continuous

with respect to s and { such that

(H,) D;(s)ZC = &, L * forevery L ORY, where & >0 and i = 1, 2.
(H,) For any k >0, there exists Ay >0 and a function Cy(x, t) O
[2(Qr) such that | D;(s)T| < Cy(x, 1) + A L, i =1, 2.

Definition 1. A weak solution of the system (2) is a 4-tuple
(41, uy, uz, uy) such that u; O L2(0, T; Hl(Q)) NL*(0, T; LZ(Q)), ou; U

20, T; (HY(Q)Y), w;(0) = u; 0, ae.in Q, for i =1, ..., 4, and satisfying
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the following weak formulation:

T
0.uy, @ )dt + D Ou; (Mo dxdt + Fi(u, us, dxdt
J0< iy @) IQT ) () Oy D@yl IQT 1, uy, uz) @

:rI u Gy dxdt,
1 or 1P

T
IO (6,u2, (p2>dt + .[Q Dz(uz)Duz D]](pzdxdt + IQ Fz(ul, Uy, u4)(p2dxdt
T T

= ”ZJ Uy (P dxdt,
Or

T
3,13, dt+J D30us [ ddzzj - dxdt,
Jo (03, @3) or 3L LU@zax, or (r3uy = m3u3) @ydx
T
J <6tu4, (p4>dl + I D4[|M4 D](p4d)€dl + I F4(1/t2, M4)(p4d)Cdl
0 Or Or
= I (c = myuy) Qdxdt,
Or
for all @ O L2(0, T; Hl(Q)), i =1, .., 4. Here, (L]} denotes the duality
pairing between H'(Q) and (H'(Q))".

Remark 2. To find a weak solution of (1), we use the following

regularized system. For € > 0,

0uf — O ODy(uf)Ouf ) + F ¢ (uf, u5, uf) = nui ~ in QO
at”% -0 E(DZ(MS)DMS) + Fz,s(uf, u%, ui) = r2u§ in Op
0,u5 — Dy30us = rub — muf in Or
atui - D4Auﬁ + F4’€(u§, ui) =c- m4u2 in Or (> 3
uf(x, 0) = ui,o(x) in Q
£
aaLnlzo, i=1, .. 4 in 5,
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where Fi ¢ = i =1, 2, 4. Therefore, throughout the section, we

F;
L+e R’

relabel ul‘-S as u;, i =1, 2, 3.

n
Definition 2. That u; ,(x, 1) = D ¢; , m()e,(x), i =1, ..., 4 are called

m=1

approximate solutions to (1) for m =1, 2, ..., n, if it satisfies

<atul,n’ em) + .[Q Dl(ul,n)Dul,n |:ﬂ:lemdx + .[Q Fl,s(“l,nv Uz n» u3,n)emdx
=r Uy ,e,,dx

1J-Q 1,n%m

<at”2,n’ em> + .[Q D2(”2,n)[|u2,n |:ﬂ]emdx + .[Q F2,8(u1,n’ Uz n» ”4,n)emdx
=r Uy e, dx

ZIQ 2,n¢m

(0,13 5 €py) + IQ D3Uus, ,, Me,,dx = .[Q (rua, = mu3 ) ey, dx

<at”4,n’ em> + .[Q DZD”4,n [Demdx + .[Q F4,€(”2,n’ ”4,n)emdx

= .[Q (—m4u4’ nt C)emdx

4)
n
Further, u; ,(x, 0) = u; o ,(x) := ch—’n,m(O)em(x). Here, ¢; , (1) O
m=1

1
¢ ([o. 7).
Theorem 1. Suppose that u;y,i=1,..,4 are in L(Q) and c
in Lz(QT). Then there exists a weak solution for (1) in the sense of
Definition 1.

Proof. Rewriting (4) as a system of ordinary differential equations

(ODEs) with unknowns ¢; , ,,, {=1,..,4 and using the standard

existence theorem, we show that there exist absolutely continuous functions
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{Cl,n,m}gzl’ {CZ,n,m}nm:p {C3,n,m}z1:1v {C4,n,m}nm:1 which satisfy (4) for
ae. t [0, T].

Now, we derive the following priori estimates to the approximate
solutions. Set @, ,, (x, 1) Zn: b n. m(t)en(x), where {bi,n,m}’ i=1..,4
are given absolutely contmuo:ls coefficients. Then, from (4), we have
jQ 0yu1, n @, pdx = ‘jQ Dy(uy, ,) By, ey,

- jQ Fe(uyn. g s 43, 0) @ pddx + ”1_[Q Uy, n @1, ndx
jQ 04tt2, @2, pdlx = ‘JQ Dy (uy, ,) Oy, , @, dx

‘IQ Fp ey, . s g, ) @, pdlx + rz_[Q U2, n®2, ndx ¢
IQ 03, nP3, pdx = ‘_[Q Dslus , (@3 jdx + IQ (r3ua, = m3uz ) @3, pdx

IQ 0,uy @y pdx = ‘IQ DyOuy ,, D@y ,dx = IQ Fy (g, s g )@y pdx

+ IQ (=mguy , + )@y, pdx
(5)

Setting Q. = uﬁn, i =1,..,4, respectively, in the above equations

(5), using Young’s inequality and then adding the resulting equations, we get

2 4
24 [Z| . |2de +| Q[Zm iy P+ D Oy |2de
i=1 i=3

+ | (Fel, s g, 0 3,0ty + Fo gy s g sty )t ) dx

—

Q

4
2
+.|.Q (F4,£(u2,na u4,n)u4,n)dx s CJQ[Z| Ui n | ]dx’ (©6)
i=1
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for some constant C > 0 independent of n. Then, application of Gronwall’s

inequality proves that
I Gar, o 2,0 13,1 s ) ||L°°(0,T;L2(Q))
+{| (s 12, 5 U3, 5 s ) ||L2(0,T;H1(Q)) <C, (N
and

|| Fl,e(”l,n’ Uy n> ”3,n)”1,n ||L1(QT) sC
” FZ,S(MLH’ Uy n» u4,n)u2,n "Ll(QT) =Cy, (8)

I Fy gz, 00 g, 0)ua,n 2o,y < €

where C >0 is a constant depending only on the given data and is

independent of n. Moreover, we can show that
I (@ttr, s Ogtan s Ogut3 . Oty ) ”Lz(o,T;(Hl(Q))D) =C, ©)

where the constant C is independent of n. Further, using the standard
compactness arguments, the sequences have convergent subsequences. Then,

there exist limit functions Uj py I = 1, ..., 4. Therefore, as n — oo, we get
(1, > U o 13 > g ) = (wy, w3, w3, ug) weakly-* in L (0, T; L*(Q)),
(1, 12,5 W35 14, ) = (1, 102, w3, 14) weaKly in L2(0, 75 H'(Q)),
R g(uy, s up s 13 ,) — Fy g(uy, up, u3) weakly in *(0r),
Fy ¢ (g, s s g ) — P gy, g, 1g) weakly in L*(Qr),
Fy g(up s g, ) — Fy g(un, uy) weakly in *(0r),
D (; ) 0w, — & weakly in I2(07), i =1, 2,

0,u; , — 0,u; weakly in 2o, 7; (H'(Q)D, i =1, ..., 4.
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The results (7)-(9) are also true for approximation solutions uf’ ,

i =1, ..., 4. Therefore, we can prove the convergence results replacing u; ,

by uf when € - 0 instead of n — oo, and obtain
(uf, ul, uf, u§) — (uy, uy, uz, uy) weakly-*in L*(0, T; *(Q)),
(uf, u%, u%, ui) — (uy, uy, uz, uy) weakly in L2(0, T: Hl(Q)),
B uS. u5) — Fi(u. up, u3) weakly in I(Qr),
Fy ¢(uf, u5, uf) — Fy(uy, u, ug) weakly in L*(Qr),
Fy ¢(5, u§) — Fy(uy, uy) weakly in *(0r).
D;(uf) Ouf — &, weakly in I2(Q7), i = 1, 2,

(a,uf, at“; atu§, at“i) - (atul’ 0,1y, O,u3, at“4)

O

weakly in I2(0, T; (H'(Q))D.

3. Optimal Control Problem

The existence of optimal control, the derivation of the adjoint equation,
and the optimality conditions are all examined in this section. Further, the
existence of weak solution for the adjoint problem is also demonstrated. To
begin, we show that there is a solution to the following optimal control

problem:
7 _qa 2 2
iy, ) ‘EI |y — g |Fdxdt +%j | ¢ [P dxdr (10)

subject to the control constraints

cO0Cy ={cOI?(Qr):c, <c<c,ae. in Qr}, (11)
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where J is the cost functional, u, is the state variable, u,, is the desired
state and ¢ [ C,; is the control variable. Here, ¢, and ¢, are given
functions satisfying ¢, < ¢, in Q. Moreover, 0 and [3 are the positive

parameters used to change the relative importance of the terms that appear in
the definition of the functional. The goal is to minimize the functional (10)

subject to state equations with respect to input rate.

Introduce the reduced cost functional as follows:
J(c) = J(uy, c). (12)
3.1. Existence of optimal control

In this subsection, we prove the existence of an optimal solution for the
problem (10) subject to (1).

Theorem 2. Suppose (uy, uy, uz, uy) is a weak solution of (1), uyy O

I (Or), ¢OC,,. Then there exists an optimal solution Y such that J (ctﬁ

= inf J(c) of the optimal control problem (12).
cC,4

Proof. From the definition, the functional is nonnegative and therefore,

it has the greatest lower bound. Let (c,) be the minimizing sequence. Since

(uy,) is bounded in LZ(QT) (from Theorem 1), the functional (12)

is bounded. Since J is bounded, there exists an infimum m such that

inf J(c) = m. Thus there exists a bounded sequence (cn)n such that
cCuq

J(c,) - m as mis a nonnegative integer and also
1
m< J(c,) < m+;.

Moreover, since the sequence (c,) is bounded in I2(Qy), there exists

g

a function ¢~ and extracting a subsequence (c, )n, again denoted by c,
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such that ¢, is weakly convergent to Min 7 (Qr). Furthermore, replacing
(g, up, uz, uy, c) in (1) by (uy . up . U3, g . ¢,) and passing the
limits, we have that (iil, Uy, Uz, Uy, C ) satisfies (1). Further, using the strong

convergence, we get

J(D < lim inf J(c,) = min J(c),
n— o cC,4

since the functional J is weakly lower-semicontinuity on ? -norm.

Therefore, c7i= ¢ is the optimal solution of (12). O
3.2. First-order optimality condition and dual problem
Define the Lagrangian function as follows:

L(uy, uy, u3, ug, pi, P2, P3» P4 C)

-a
2 or

2 B 2
Uy — Uyy |“dxdt + —J. c|”dxdt
2 =y P+ § [ [
- _[Q pil0,uy = O 0Dy () Ouy) = ey (1= g = oquy) + yyugus)]
T
- _[Q pal0uy = O LD, (up) Ouy) = rmun (1 =y = Clgay) + Yaupuy]
T
—_[ p3l0;u3 = D3Buy = ruy + myu3]
or
- _[Q Pal0suy = D3fuy + myuy + Yaupuy = c].
T
Theorem 3. If ut = (ullj, MZD, u3D, ME) is an optimal state solution and M

is an optimal control variable for the optimal control problem (10)-(11),

then there exists an adjoint (or) dual variable p = (p{, pa, P3> Pa)

satisfying
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=0,py — O ODy(uy) Opy) + Dy (uy) Oy Opy = 15(1 = 2uy = ayup) py
+Yiuzpy + nlouypr =0 in Op
=0,y — O 0Dy (up) Opy) + Di(up) Dualpy = 11 = 2uy = 0oy) pa

+ Yougpy + Qg py = r3p3 + Yaugps — &uy —upg) =0 in O

=0,p3 ~ D3p3 + m3p3 + Yy py = 0 in Qr
=0;:p4 = Dylpy + mypy + Yauspy + Youspy =0 in Or
(13)

with following boundary conditions

op; _ P

an =0, i=1..,40nZr, (14)
and final conditions

pi(T) =0, i=1..40nQ. (15)

Further, the optimal control His given as

cH= min(cb, max(ca, _—E“D (16)

Proof. The first-order optimality system is given by the Karush-Kuhn-
Tucker (KKT) conditions which results from equating the partial derivatives
of the Lagrangian L(uy, uy, us, g, pi, Pa» P3» P4> €) With respect to uy,

uy, uz and uy equal to zero. Now,
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oL ,
(W’ 5”1] = j {-0,p1 — O ODy(uy)Opy) + Dj(uy) OuyOp,
1 Or

=1 (1 = 2uy = Qyuy) py + Yyuz py + rQouy py} Suydxdt

oL )

(W’ 5142] = j {-0,p, — 00D, (uy)0p,) + D (up) OupOp,y
2 Oor

= (1= 2uy = Quy) py + Yougps + R0y py = 13p3

+ Yaugpy = 0(uy = ung )} Suydxdt

oL
(a—, 61,{3) = j {—6,p3 - D3Ap3 + ms3 p3 + ylulpl} 5u3dxdt
usz or

oL
(m» 5“4] = j 0 {-0:p4 — D4lpy + mypy + Yaup ps + Yoty pr} Suydxdt
T

17
with boundary and final conditions
op; .
an’ =0,i=1..,40n X2y and ‘ (18)

pi(T)=0,i=1,..,40nQ

From (17) and (18), we get the required adjoint system (13)-(15) for the
given optimal control problem (2). Further, to find the optimality conditions,

we have

oL

- D:
Oc

=p4+BCD=0atc c.

Therefore, using the properties of control space for cD, we get

_—g“ if ¢, < _—54 < ¢
H=le, if _—54 <c,, (19)
Cp if _—54 = Cp-

Finally, in the compact notation, the optimality condition is written as

M= mjn(cb, max(ca, _—54)) g
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3.3. Existence of the solution of adjoint problem

In this subsection, we prove the existence of weak solution for the
adjoint system. First, we give the definition of weak solutions of adjoint
system (13)-(14).

Definition 3. A weak solution of (13) is a 4-tuple (py, pa, p3, ps) such
that (py, pp. p3. pa) D20, Ts HY(Q) N L (0. T L2(Q)), (3,p1. 8, P2
0,13, 0,p4) D L7 (0, T; (H'(Q))),

T
‘_[ (0,11, @)dt +_[ Dy (uy) Upy Weydxdt +_[ Dj (uy) By Upy @y dxdt
0 Or Or
- ﬁf (1= 2uy = ayuy) py@rdxde + _[ (Viuzpy + rOqus py) @dxdt = 0,
Or Oor
T
_Io (012, @r)dt + IQ D;(u)Opy (@ydxdt
T
+ I D5 (1) Ouy Opo @ydxdt — ”2.[ (1 = 2uy = ayuy) pr@dxdt
Or Or
+ _[Q (Vauapy + riyu py) @rdxdt
T
‘j (3p3 + Yauypy) Qrxdt - 0‘_[ (uy = urq ) @pdxdt = 0,
Or Or
T
—I (0,p3, @3)dr + I Ds0p3 Mgsydxdt + m3‘[ p3Pzdxdt
0 or or
+ J. y1u1p1(p3dxdt =0,
Or

T
‘_[ (0,4, @q)dt +_[ D4UOp, (Hgydxdt + m4_[ PaPydxdt
0 Or Or

+_[ Yauty p4@ydxdt +j Yauo pr@ydxdt = 0,
Or or
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for all @ O L2(0, T; Hl(Q)), i =1, .. 4. Here, ([} denotes the duality
pairing between H'(Q) and (H'(Q))"

Theorem 4. Assume that the hypotheses of Theorem 1 are true and a

4-tuple (ul, Uy, U3, u4) is a weak solution of (1). Then, there exists a weak

solution to the adjoint system (13)-(14) in the sense of Definition 3.

The Faedo-Galerkin method is used to prove the aforementioned
theorem. The approximation system is then used to prove the existence of
a solution to the adjoint system (13) with (15). As a result, we prove the

existence solution interval (0, 7] for the Faedo-Galerkin solution as well as

the global existence of the Faedo-Galerkin weak solution, as in Theorem 1,

so we excluded the proof details (see [16, 17] and the references therein).
4. Conclusion

In this paper, we investigated a model for acid-mediated tumor
progression with chemotherapeutic intervention that was bounded by a
distributed optimal control problem constrained by coupled PDEs. The
primary goal of this study was to optimize drug concentration in a
mathematical model of tumor invasion where the concentration is directly
regulated by the control rate. Using the Faedo-Galerkin approximation
method, we first showed the existence of the solution to the direct problem.
We also addressed an optimal control problem and proved that an optimal
control solution exists that minimizes the performance measure. Using
the Lagrangian framework associated to the optimal control problem for
the primal and dual variables, we next obtained the first-order optimality
conditions satisfied by the optimal control. Finally, we proved the existence

of a weak solution of the adjoint problem.
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