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EXISTENCE AND OPTIMAL CONTROL ANALYSIS OF 

ACID-MEDIATED TUMOR INVASION MODEL 

 

Abstract 

The distributed optimal control problem of a highly nonlinear coupled 

system of reaction-diffusion equations is investigated in the study. 

Normal cell density, tumor cell density, excess +H  ion concentration, 

and chemotherapy drug concentration are all represented by partial 

differential equations (PDEs) in the coupled system of acid-mediated 

tumor invasion model. It is a usual factor to formulate an          

optimal control problem by introducing control interventions while 

considering the tumor invasion model with drug chemotherapy. 

However, in our model, we consider a constant drug injection rate as a 

control variable based on biological motivation. The major goal of our 

optimal control problem is to reduce the overall amount of medicine 
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supplied while minimizing cancer cell proliferation. First, we prove 

the existence of solutions to the direct problem using the Faedo-

Galerkin approximation method, deriving a priori estimates, and then 

passing to the limit in the approximate solutions using monotonicity 

and compactness arguments. We introduce a functional to minimize 

and to establish the existence of optimal control for the proposed 

optimal control problem. Using the Lagrangian framework, we derive 

the adjoint problem and necessary optimality condition associated 

with our problem. Finally, we prove the existence of weak solutions to 

the adjoint system. 

1. Introduction 

Cancer is a complex disease that develops into one of the causes of  

death in humans as of uncontrolled cell development. It can also spread               

to other organ parts. By creating lumps or masses of aberrant cells, cancer             

cells engage in continual cell division and disrupt organ processes. 

Chemotherapy, sometimes known as chemo, is a type of cancer treatment 

used to kill or limit the growth of cancer cells. During treatment, it has 

harmful side effects and also affects normal and healthy cells. Chemotherapy 

can stop cancer cells from multiplying and invading. Cells that are normal     

or non-cancerous do not spread throughout the body, but cancer cells                    

are diffusion. As a result, to make a diagnosis and treat cancer, it is vital                  

to understand how it progresses. Many researchers have constructed 

mathematical models to understand and determine how cancer cells evolve 

and respond to therapy in the literature; for example, see [2, 3, 8, 14, 15] and 

its references. 

The acid-mediation hypothesis, in which tumor cell invasion is enhanced 

by acidification of the region around the tumor-host interface induced by 

aerobic glycolysis, is discussed in [23]. This acid kills normal cells and 

spreads the tumor cells to other parts of the body. With a series of reaction-

diffusion equations concerns the interaction between the tumor, host,                

and acid, this model was first investigated theoretically by [8]. Holder         

and Rodrigo investigated the mathematical model for acid-mediated tumor 
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invasion with chemotherapeutic intervention in [22] with a homogeneous 

population and with a spatially heterogeneous population in [21]. 

In this paper, we investigate a highly nonlinear coupled cancer invasion 

model. According to [21], the coupled system of equations defining the 

interactions of normal cells, malignant cells, excess +
H  ions, and medication 

concentration is modelled. The following is a nonlinear reaction-diffusion 

model that arises in acid-mediated tumor invasion with nonlinear diffusion: 
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with initial and boundary conditions 
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u Σ==η∂
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where ( ),,0 TQT ×Ω=  ( ),,0 TT ×Ω∂=Σ  Ω is an open bounded domain 

in N
R  with boundary Ω∂  and η  is the unit normal vector on .Ω∂           

Normal cell density ( ),,1 txu  tumor cell density ( ),,2 txu  excess +
H  ion 

concentration ( ),,3 txu  and chemotherapeutic drug concentration ( )txu ,4  

are the four physical variables involved in acid-mediated tumor cell invasion 

model with spatial and time evolution. The positive constants ,1r  ,2r  ,3r  

,1α  ,2α  ,1γ  ,2γ  ,4γ  3m   and 4m  are shown in Table 1. When considering 

mathematical modelling of cancer growth with medication chemotherapy,            

it is common to frame an optimal control problem with the objective of 

minimizing the total amount of drug administered. We use the control as Ir  

to reduce tumor burden while decreasing total drug administered, based on 

biological motives and research such as [3] and [19], and by keeping the 

biomedical goal in mind. 
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Table 1. Symbols and description of parameters 

Symbol Description 

1u  Density of normal cell 

2u  Density of tumor cell 

3u  Excess +H  ion concentration 

4u  Chemotherapy drug concentration 

( ) ( )2211 , uDuD  Density-dependent diffusion coefficients 

43, DD  Constant diffusion coefficients 

T Time 

0,1u  Initial normal cell 

0,2u  Initial tumor density 

0,3u  Initial +H  ion concentration 

0,4u  Initial drug concentration 

1r  Normal cell growth rate 

2r  Tumor cell growth rate 

1α  Normal cell death due to tumor cell 

2α  Tumor cell death due to normal cell 

1γ  Normal cell killed by +H  ions 

2γ  Tumor cell killed by drug 

3r  +H  ion production rate 

3m  +H  ion removal rate 

4m  Chemotherapy removal rate 

4γ  Chemotherapy removal by tumor interaction 

Ir  Chemotherapy drug infusion 

In this model, ( )txccrI ,==  is the control variable when dealing with 

the optimal control system and ( ),0, xui  4...,,1=i  represents the initial 

conditions of unknown variables ,4...,,1, =iui  respectively. We have          
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also assumed Neumann boundary conditions on the TΣ  boundary. The 

mathematical analysis of an optimal control problem constrained by the 

system of PDEs (1) is discussed in this work. The study of mathematical 

analysis of optimal control problems constrained by reaction-diffusion 

equations has attracted attention in recent years [9, 11, 16-19] and its 

references. In electro cardiology, Ainseba et al. investigated an optimal 

control problem constrained by PDEs [1]. The optimal control problem for 

the Keller-Segel equations to control the aggregate of cells by chemical 

concentration was investigated. In addition, the existence and uniqueness of 

the weak solutions have been established in [12, 13], and the references 

therein. 

The existence of solutions and the optimal control problem for the 

cancer invasion models have been studied in [4, 19, 20], and a large number 

of references therein. Apart from the theoretical contributions mentioned 

above, the literature also encompasses some numerical investigations on 

optimal control problems for the cancer invasion system, for example, see  

[5, 6, 9-11, 17] and its references. Aside from the existing literature above, it 

should be highlighted that, to the best of the author’s knowledge, there is no 

work available in the literature for optimal control problems constrained by a 

system of PDEs (1) with nonlinear diffusion operators. As a result, we 

attempted to investigate the optimal control problem considering PDEs of 

the form (1) in this paper. 

The paper is structured as follows: We state the basic theorem and 

introduce the approximation problem for the original system (1) in Section 2. 

The Faedo-Galerkin method is then used to determine the existence of weak 

approximation system solutions [7]. We investigate the existence of optimal 

control in Section 3 and derive the adjoint problem and first-order optimality 

conditions. Finally, we obtain the existence of a weak solution of the adjoint 

problem. Conclusion is provided in Section 4. 
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2. Existence of Solutions for Direct Problem 

In this section, we prove the existence of solutions to the direct problem. 

To do this, we establish an approximation problem for (1) to verify the 

existence of weak solutions for (1). 

Furthermore, throughout the work, we refer to C as the generic constant. 

For simplicity, we are considering following equivalent form of the 

system (1): 
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where 

( ) ,,, 3112111
2
113211 uuuururuuuF γ+α+=  

( ) ,,, 4222122
2
223212 uuuururuuuF γ+α+=  

( ) ., 424424 uuuuF γ=  

Remark 1. To establish the weak solutions of the given degenerate 

reaction-diffusion system (1), we assume that the following hypotheses hold 

true. The Carathéodory functions ( ) NN
i sD RRR →×ζ :  are continuous 

with respect to s and ζ  such that 

( )1H  ( ) 2ζδ≥ζζ ii sD  for every ,N
R∈ζ  where 0>δi  and .2,1=i  

( )2H  For any ,0>k  there exists 0>Λk  and a function ( ) ∈txCk ,  

( )TQL
2  such that ( ) ( ) .2,1,, =ζΛ+≤ζ itxCsD kki  

Definition 1. A weak solution of the system (2) is a 4-tuple 

( )4321 ,,, uuuu  such that ( ( )) ( ( )),;,0;,0 212 ΩΩ∈ ∞
LTLHTLui ∩  ∈∂ itu  

( ( ( )) ),;,0 12 ∗ΩHTL  ( ) ,0 0,ii uu =  a.e. in ,Ω  for ,4...,,1=i  and satisfying 
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the following weak formulation: 
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for all ( ( )),;,0 12 Ω∈φ HTLi  .4...,,1=i  Here, ⋅⋅,  denotes the duality 

pairing between ( )Ω1
H  and ( ( )) .1 ∗ΩH  

Remark 2. To find a weak solution of (1), we use the following 
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where ,
1,

i

i
i F

F
F ε+=ε  .4,2,1=i  Therefore, throughout the section, we 

relabel ε
iu  as .3,2,1, =iui  

Definition 2. That ( ) ( ) ( )
=

==
n

m

mmnini ixetctxu

1
,,, 4...,,1,,  are called 

approximate solutions to (1) for ,...,,2,1 nm =  if it satisfies 

( ) ( )

( ) ( )

( )

( )

( )

.

,,

,

,,,

,,,

,44

,4,2,4,42,4

,33,23,33,3

,22

,4,2,1,2,2,22,2

,11

,3,2,1,1,1,11,1

























+−=

+∇⋅∇+∂

−=∇⋅∇+∂

=

+∇⋅∇+∂

=

+∇⋅∇+∂



 

 



 



 

Ω

Ω Ω ε

Ω Ω

Ω

Ω Ω ε

Ω

Ω Ω ε

dxecum

dxeuuFdxeuDeu

dxeumurdxeuDeu

dxeur

dxeuuuFdxeuuDeu

dxeur

dxeuuuFdxeuuDeu

mn

mnnmnmnt

mnnmnmnt

mn

mnnnmnnmnt

mn

mnnnmnnmnt

 

 (4) 
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[ ]( ).,01
TC  

Theorem 1. Suppose that 4...,,1,0, =iui  are in ( )Ω∞
L  and c                    

in ( ).2
TQL  Then there exists a weak solution for (1) in the sense of 

Definition 1. 

Proof. Rewriting (4) as a system of ordinary differential equations 

(ODEs) with unknowns ,,, mnic  4...,,1=i  and using the standard      

existence theorem, we show that there exist absolutely continuous functions 
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{ } ,1,,1
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Setting ,,,
ε=φ nini u  ,4...,,1=i  respectively, in the above equations 

(5), using Young’s inequality and then adding the resulting equations, we get 
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for some constant 0>C  independent of n. Then, application of Gronwall’s 

inequality proves that 
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where 0>C  is a constant depending only on the given data and is 

independent of n. Moreover, we can show that 

( ) ( ( ( )) ) ,,,, 12 ;,0,4,3,2,1 Cuuuu
HTLntntntnt ≤∂∂∂∂ ∗Ω  (9) 

where the constant C is independent of n. Further, using the standard 

compactness arguments, the sequences have convergent subsequences. Then, 

there exist limit functions .4...,,1,, =iu ni  Therefore, as ,∞→n  we get 

( ) ( )4321,4,3,2,1 ,,,,,, uuuuuuuu nnnn ⇀  weakly-* in ( ( )),;,0 2 Ω∞
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The results (7)-(9) are also true for approximation solutions ,ε
iu  

.4...,,1=i  Therefore, we can prove the convergence results replacing niu ,  

by ε
iu  when 0→ε  instead of ,∞→n  and obtain 
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εεεε  weakly-* in ( ( )),;,0 2 Ω∞
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3. Optimal Control Problem 

The existence of optimal control, the derivation of the adjoint equation, 

and the optimality conditions are all examined in this section. Further, the 

existence of weak solution for the adjoint problem is also demonstrated. To 

begin, we show that there is a solution to the following optimal control 

problem: 

( )  
β+−α=

T TQ Q
d dxdtcdxdtuucuJ

22
222 22

,ˆ  (10) 

subject to the control constraints 

 { ( ) },ina.e.:2
TbaTad QcccQLcCc ≤≤∈=∈  (11) 



P. T. Sowndarrajan 64 

where J is the cost functional, 2u  is the state variable, du2  is the desired 

state and adCc ∈  is the control variable. Here, ac  and bc  are given 

functions satisfying ba cc ≤  in .TQ  Moreover, α  and β  are the positive 

parameters used to change the relative importance of the terms that appear in 

the definition of the functional. The goal is to minimize the functional (10) 

subject to state equations with respect to input rate. 

Introduce the reduced cost functional as follows: 

 ( ) ( ).,ˆ: 2 cuJcJ =  (12) 

3.1. Existence of optimal control 

In this subsection, we prove the existence of an optimal solution for the 

problem (10) subject to (1). 

Theorem 2. Suppose ( )4321 ,,, uuuu  is a weak solution of (1), ∈du2  

( ),2
TQL  .adCc ∈  Then there exists an optimal solution ∗

c  such that ( )∗
cJ  

( )cJ
adCc∈

= inf  of the optimal control problem (12). 

Proof. From the definition, the functional is nonnegative and therefore, 

it has the greatest lower bound. Let ( )nc  be the minimizing sequence. Since 

( )nu2  is bounded in ( )TQL
2  (from Theorem 1), the functional (12)              

is bounded. Since J is bounded, there exists an infimum m such that 

( ) .inf mcJ
adCc

=
∈

 Thus there exists a bounded sequence ( )
nnc  such that 

( ) mcJ n →  as m is a nonnegative integer and also 

( ) .
1
n

mcJm n +≤≤  

Moreover, since the sequence ( )nc  is bounded in ( ),2
TQL  there exists  

a function ∗
c  and extracting a subsequence ( ) ,nnc  again denoted by nc  
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such that nc  is weakly convergent to ∗
c  in ( ).2

TQL  Furthermore, replacing 

( )cuuuu ,,,, 4321  in (1) by ( )nnnnn cuuuu ,,,, ,4,3,2,1  and passing the 

limits, we have that ( )cuuuu ~,~,~,~,~
4321  satisfies (1). Further, using the strong 

convergence, we get 

( ) ( ) ( ),mininflim cJcJcJ
adCc

n
n ∈∞→

∗ =≤  

since the functional J is weakly lower-semicontinuity on 2
L -norm. 

Therefore, cc =∗ :  is the optimal solution of (12). □ 

3.2. First-order optimality condition and dual problem 

Define the Lagrangian function as follows: 
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Theorem 3. If ( )∗∗∗∗∗ = 4321 ,,, uuuuu  is an optimal state solution and 
∗

c  

is an optimal control variable for the optimal control problem (10)-(11), 

then there exists an adjoint (or) dual variable ( )4321 ,,, ppppp =  

satisfying 
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 (13) 

with following boundary conditions 

 ,4...,,1,0 T
i oni

p Σ==η∂
∂

 (14) 

and final conditions 

 ( ) .4...,,1,0 Ω== oniTpi  (15) 

Further, the optimal control ∗
c  is given as 

 .,max,min 4
















β
−=∗ p

ccc ab  (16) 

Proof. The first-order optimality system is given by the Karush-Kuhn-

Tucker (KKT) conditions which results from equating the partial derivatives 

of the Lagrangian ( )cppppuuuuL ,,,,,,,, 43214321  with respect to ,1u  

32 , uu  and 4u  equal to zero. Now, 
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with boundary and final conditions 
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 (18) 

From (17) and (18), we get the required adjoint system (13)-(15) for the 

given optimal control problem (2). Further, to find the optimality conditions, 

we have 

04 =β+=∂
∂ ∗

cp
c

L
 at .cc =∗  

Therefore, using the properties of control space for ,∗
c  we get 

 








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
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−
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c
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c
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c
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c
p

c  (19) 

Finally, in the compact notation, the optimality condition is written as 

 .,max,min 4 















β
−=∗ p

ccc ab  □ 



P. T. Sowndarrajan 68 

3.3. Existence of the solution of adjoint problem 

In this subsection, we prove the existence of weak solution for the 

adjoint system. First, we give the definition of weak solutions of adjoint 

system (13)-(14). 

Definition 3. A weak solution of (13) is a 4-tuple ( )4321 ,,, pppp  such 

that ( ) ( ( )) ( ( )),;,0;,0,,, 212
4321 ΩΩ∈ ∞

LTLHTLpppp ∩  ( ,, 21 pp tt ∂∂  

) ( ( ( )) ),;,0, 12
43

∗Ω∈∂∂ HTLpp tt  

( ) ( )   φ∇∇′+φ∇⋅∇+φ∂−
T

Q Q
t

T T

dxdtpuuDdxdtpuDdtp
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11111111111,  
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T TQ Q
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dxdtpuDdtp
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for all ( ( )) .4...,,1,;,0 12 =Ω∈φ iHTLi  Here, ⋅⋅,  denotes the duality 

pairing between ( )Ω1
H  and ( ( )) .1 ∗ΩH  

Theorem 4. Assume that the hypotheses of Theorem 1 are true and a          

4-tuple ( )4321 ,,, uuuu  is a weak solution of (1). Then, there exists a weak 

solution to the adjoint system (13)-(14) in the sense of Definition 3. 

The Faedo-Galerkin method is used to prove the aforementioned 

theorem. The approximation system is then used to prove the existence of       

a solution to the adjoint system (13) with (15). As a result, we prove the 

existence solution interval ( ]T,0  for the Faedo-Galerkin solution as well as 

the global existence of the Faedo-Galerkin weak solution, as in Theorem 1, 

so we excluded the proof details (see [16, 17] and the references therein). 

4. Conclusion 

In this paper, we investigated a model for acid-mediated tumor 

progression with chemotherapeutic intervention that was bounded by a 

distributed optimal control problem constrained by coupled PDEs. The 

primary goal of this study was to optimize drug concentration in a 

mathematical model of tumor invasion where the concentration is directly 

regulated by the control rate. Using the Faedo-Galerkin approximation 

method, we first showed the existence of the solution to the direct problem. 

We also addressed an optimal control problem and proved that an optimal 

control solution exists that minimizes the performance measure. Using             

the Lagrangian framework associated to the optimal control problem for              

the primal and dual variables, we next obtained the first-order optimality 

conditions satisfied by the optimal control. Finally, we proved the existence 

of a weak solution of the adjoint problem. 
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