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Abstract 

In this paper, an effective semi-analytical-numerical method is 

proposed for solving singular perturbation two-point boundary value 

problems (SPBVPs). Firstly, the original problem is replaced by an 

equivalent singular perturbation initial value problems (SPIVPs) of 

first-order with an unknown initial condition that can be determined 

iteratively using shooting method. Then, an adaptive one-step explicit 

piecewise analytical integration scheme over a special non-uniform 

mesh is presented to integrate these SPIVPs. The accuracy and 

stability properties of the scheme are investigated and shown to yield 

at least second-order of accuracy and L-stability property. A good 

estimation of the missed initial condition is obtained and suggested as 

a starting initial guess to ensure accelerated convergence of the 

shooting method. To demonstrate the applicability of the method, we 

have applied it to linear and nonlinear test problems at different values 

of the perturbation parameter. The method can be extended to higher-

order SPBVPs. We have applied it to the well-known third-order 

Blasius’ viscous flow problem for a large suction case. The results 

indicate that the method approximates the solution very well not only 

over the boundary layer region but also overall the problem domain. 

Moreover, the method is more accurate and has a higher 

computational efficiency compared to other methods in the literature. 

1. Introduction 

Singular perturbation problems (SSPs) are of common occurrence in      

all branches of engineering and applied mathematics. These problems are 

encountered in various fields such as solid mechanics, quantum mechanics, 

fluid mechanics, fluid dynamics, celestial mechanics, chemical reactor 

theory, aerodynamics, reaction-diffusion equations, geophysics, and many 

other problems [1-5]. In these problems, the presence of a small perturbation 

parameter multiplying the highest derivative of the differential equation 

results in a sharp boundary and/or interior layers in the solution which 

prevents us from obtaining satisfactory numerical solutions [1-11, 16-41]. 

Therefore, more efficient and simpler computational methods are needed. 
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Many theoretical and numerical studies have been carried out on SPPs and 

their solutions. For details, one may refer to the books of O’Malley [6], 

Farrell et al. [7], Doolan et al. [8], Roos et al. [9], Morton [10], and Miller et 

al. [11]. A common strategy for dealing with singular perturbation boundary 

value problems (SPBVPs) consists of replacing the original problem with 

singular perturbation initial value problems (SPIVPs), which are more 

convenient to handle. Shooting method is an iterative method that solves 

boundary value problems (BVPs) by replacing them by equivalent initial 

value problems (IVPs) with some unknown initial conditions that can be 

obtained iteratively using shooting methods [12-20, 40]. 

Due to the high stiffness in SPBVPs, using stable integration schemes 

with the shooting method is essential to obtain an acceptable and accurate 

solution [16-20, 40]. Moreover, using high-order initial approximation 

methods [15, 42-44] to improve the shooting method for SPBVPs has quite 

limited utility due to the degeneration of their order to first-order for ill-

conditioned problems [45]. In addition to their high computational cost, 

more than one differential equation is required to be solved at each step [15]. 

Shooting method combined with different adapted integration schemes, 

for layer and outer regions, is presented for solving linear SPBVPs [16-20]. 

Natesan and Ramanujam [16] presented a shooting method with fourth-order 

Runge-Kutta method and a classical finite difference scheme for second-

order reaction-diffusion Neumann SPBVPs. The same authors [17] extended 

their work using a shooting method with an exponentially fitted difference 

scheme and a classical upwind scheme to solve second-order Robin-Dirichlet 

SPBVPs having a less severe boundary layer. The same problem was solved 

by Vigo-Aguiar and Natesan [18] using the shooting method with two 

integration procedures. The first procedure consists of a classical and 

exponentially fitted difference scheme whereas the second one is an adaptive 

single-step exponential scheme. Geng and Tang [19] presented a shooting 

method with a piecewise reproducing kernel scheme for second-order 
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Dirichlet SPBVPs. Roja and Tamilselvan [20] used the combination of the 

shooting method, boundary value technique, and a finite difference scheme 

to find a numerical solution for third-order reaction-diffusion SPBVPs. Liu 

[40] constructed a Lie-group shooting method for nonlinear SPBVPs to 

search for a missing initial condition through the finding of a suitable value 

of a parameter after a coordinate transformation via a rescaling technique. 

Most of the present shooting methods in the literature are for linear 

SPBVPs, result in approximate numerical solutions, use different integration 

schemes for layer and outer domains, and have a relatively high 

computational cost. To overcome these drawbacks, in this paper, an effective 

semi-analytical-numerical method is proposed for solving linear and 

nonlinear SPBVPs. Firstly, the original problem is replaced by an equivalent 

singular perturbation system of first-order initial value problems (SPIVPs) 

with an unknown initial condition that can be determined iteratively using 

shooting method. Then, an adaptive one-step explicit piecewise analytical 

integration scheme over a special non-uniform mesh is presented to integrate 

these SPIVPs. The accuracy and stability properties of the scheme are 

investigated and shown to yield at least second-order of accuracy and                   

L-stability property. To ensure accelerated convergence of the shooting 

method, a good estimation of the missed initial condition is obtained and 

suggested as a starting initial guess. To demonstrate the applicability of the 

method, we have applied it to linear and nonlinear test problems at different 

values of the perturbation parameter. The method can be extended to higher-

order SPBVPs. We have applied it to the well-known third-order Blasius’ 

viscous flow problem for a large suction case. The results indicate that the 

method approximates the solution very well not only over the boundary  

layer region but also overall the problem domain. Moreover, the method is        

more accurate and has a higher computational efficiency compared to other 

methods in the literature. 
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2. Description of the Method 

Consider the nonlinear SPBVP given by 

( ) ( ) ( ) ( ) [ ],,,0,, baxyxqxyyxpxy ∈=+′+′′ε  

( ) ( ) ,, β=α= byay  (1) 

where 10 ≪ ε<  is a small positive parameter, α,, ba  and β are given 

constants, ( )yxp ,  and ( )yxq ,  are assumed to be sufficiently differentiable 

functions, and ( ) 0, >≥ Myxp  for every [ ],, bax ∈  where M is some 

positive constant. Under these assumptions, SPBVP (1) has a boundary layer 

of width ( )εO  at .ax =  The SPBVP (1) can be written as a SPIVP, given 

by 

 
( )

( ) ( ) ( ) ( )
,

,,,

,

21212

121





ϖ=−−=′ε

α==′

avvxqxvvxpv

avvv
 (2) 

where ( ),1 xyv =  ( )xyv ′=2  and ϖ is the missing initial value to be 

determined. In shooting method, the solution of the SPIVP (2) is denoted by 

( ) .2,1,, =ϖ= ixvv ii  The method results in a sequence of approximate 

solutions ( ),, kk
i

k
i xvv ϖ=  ,2,1=i  where k is the number of shooting 

iterations. The parameter ϖ is selected in such a way that a residual function 

Ψ satisfies: 

 ( ) ( ) .0,,lim 1 =β−ϖ=ϖψ=Ψ
∞→

kkk

k
bvb  (3) 

Starting the shooting process with an initial guess 
0ϖ=ϖ  results into         

a residual function ( ).,
00 ϖψ b  If the residual function ( )00

, ϖψ b  is not 

sufficiently close to zero, we choose another elevation, i.e., ,
1ϖ=ϖ  and 

repeat the process until the residual function ( )kk
b ϖψ ,  is sufficiently close 

to zero at the iteration ,Kk =  i.e., ( ) ,,,
Kkk

tolb ϖ≅ϖ<ϖψ  where tol  

is a user-specified tolerance. 
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2.1. Adaptive piecewise integration method for SPIVPs 

Since the SPIVP (2) is still singular perturbation, applying any 

conventional method requires a very fine mesh ( )ε<h  to satisfy the 

criterion of absolute stability. In view of being very small in practice, the 

restriction on the step size would often lead to the prohibitive cost of 

computational time. Therefore, in order to obtain an acceptable approximate 

solution to the SPIVP (2), an adaptive explicit piecewise analytical 

integration scheme over a special non-uniform mesh is suggested as follows: 

The SPIVP (2) can be written as 

 
( )

( ) ( )
,

,,,

,

2212

121





ϖ=θ=′ε

α==′

avvvxv

avvv
 (4) 

where ( ) ( ) ( ) ( ).,,,, 12121 vxqxvvxpvvx −−=θ  

Consider the interval [ ]baI ,=  and divide it into 1−N  nonoverlapping 

sub-intervals [ ],, 1+= nnn xxI  1,,2,1,0 −= Nn …  such that ax =0  and 

,1 bxN =−  where N denotes the number of grid points. Suppose we have 

solved numerically the SPIVP (4) up to a point nx  and assuming                  

the localization hypothesis ( ),,, nnini xvv =  ,2,1=i  we want to obtain an 

approximate analytical solution ( ),,, xww nini =  ,2,1=i  that is, ( ) ≈xw ni,  

( ),, xv ni  ,2,1=i  .nIx ∈∀  Then the SPIVP (4) may be approximated by 

[21, 22]: 

( ) ( ) ( )
( ) ( ) ( ( ) )

( ( ) ) ( )
,,

,

,

,2,2,2,2

,1,1,2

,1,1,2,1

n

nnnnnn

nnnnnnn

nnnnn

Ix

vxwvxwK

vxwHxxJxw

vxwxwxw

∈∀










=−+

−+−+θ=′ε

==′

 (5) 
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where 

( ) ( ) ( )nnnnnnnnnnnn vvx
v

Hvvx
x

Jvvx ,2,1
1

,2,1,2,1 ,,,,,,,, ∂
θ∂=∂

θ∂=θ=θ  

and ( ),,, ,2,1
2

nnnn vvx
v

K ∂
θ∂=  

whose analytical solution may be readily obtained. For example, if ,0≠nH  

then we have the following analytical solution: 

( ) ( )
( ) ( )

( )
( ) ( )

( ) ( )
( ) ( )

( )
( ) ( )

,

2

2 22

,2

2

22

,1















χ
ς−φχ+ς+φχ+χ−=

χ
ρ+σχ+ρ−σχ+χΓ=

ε
χ+−

ε
χ−−

ε
χ+−

ε
χ−−

n

KxxKxx

n
n

n

KxxKxx

n

H

eeJ
xw

H

ee
xw

nnnn

nnnn

 

                                                                                                    ,nIx ∈∀  (6) 

where 

( ( ) ) ,,2,1
2

JKHJxxvKvH nnnnnnnnn +θ−−++=Γ  

,4 2
nn KH +ε=χ  

,
222

,2 nn
n

nnn JK
H

vK
−







 θ+−=σ  

,
2

1 22
,2 nnnnn KJHHv +τ+ε=ρ  

,
2

1

2

1
,2

2
nnnnn KJvK θ−ε+=τ  

,,2 nnn JvH +=φ  

( ) .2,2 nnnnnn JKHvK +θ−=ς  
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Starting with ( ) ( ),,, 0,20,1 ϖα=vv  we get the solution ( ),0, xwi  2,1=i  

for [ ]1, xax ∈  and then get new approximate initial values ( ),10,1, xwv ii =  

,2,1=i  to obtain the solution ( ),1, xwi  2,1=i  for [ ]., 21 xxx ∈  Repeating 

the procedure along the nodes on the integration interval resulting in an 

approximate piecewise analytical solution for the SPIVP (5). 

Remark 1. At ,0=nH  the solution given by (6) is reduced to 

( )

( )

( )

( ) ,,

2

1

2

2,2

3,1

n

n

Kxx

n

n

Kxx

n

Ix

K

e
xw

K

e
xw

nn

nn

∈∀















τ+Γε=

Γ−σ+Γ=

ε
−

ε
−

 (7) 

where 

,22 2
nnn KJ θε+ε=Γ  

( ( ) ) ( )( ) ( ) 2
,1,2

3 22 nnnnnnnnn KxxxxJvxxvK −θ+−−+−=σ  

( ),2 nnn xxJK −ε−  

( )( ) .,2
2

nnnnnnn JKxxJvK ε−θ+−−=τ  

2.2. Mesh selection strategy 

We form a special mesh in such a way that one wants to get more 

information about the solution of the SPBVP in the boundary layer region. 

This is quite natural because one would like to portray the behavior of           

the solution inside the boundary layer region. The required step size 

nnn xxh −= +1  can be determined directly according to the variation of the 

solution within a time step as follows: 

Suppose we have solved numerically SPIVP (5) up to point nx  and we 

want to determine a point 1+nx  according to the variation of the solution that 
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verifies ( ) ,,11,1 rvv nn ≤−+  ,0>r  where r is a user’s specified constant. 

Then we have 

 ,,min

,2

1












≤−+ r
v

r
xx

s
n

nn  (8) 

where s is a parameter that can be determined from the local truncation error. 

2.3. Local truncation error 

From (4) and (5), we have 

 

( )
( ) .,

,1,2,2

,1

,2,2









′−′+′′ε=

−=−=

′ε=′ε=θ

nnnnnn

nnnn

nnnn

vHvpvJ

pvxpK

vxw

 (9) 

 We consider the functional 2,1, =ili  associated with the integration 

scheme in (6) and defined by 

( ( ) ) ( ) .,2,1,, ,,, nnininnii Ixivxwxxxwl ∈∀=−=−  (10) 

After expanding (6) in Taylor series about nx  and taking into account 

the restriction on the step size in (8), we get 

 ( )
( )
( )





=µ

=µ
≤

,2,

,1,
,

3
,22

4
,11

,
irv

irv
rvl

n

n
nii  (11) 

where 

( )
( ) ( )

( )
( )

( )
( )

( )
( )

.

6

1

24

1

43

4
,2

,2,2,2,2
,22

44,1,1,1
4
,1

,11 4
,1













ε=
θ

θ−′′′−θ′′′
=µ

ε=
′′−′′′′′+θ

=µ

−

−
′θ

S

nn

nnnnnnn
n

S

v

nnnnnnn
n

O
v

vpvvv
v

O
vHvpvv

v
s

nn
 (12) 

This suggests that for ,34,1=S  the integration scheme exhibits a uniform 

convergence with at least third and second-order of accuracy for 1v  and ,2v  

respectively. 
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2.4. Stability analysis 

As the present scheme in (6) is exact when the right-hand side of          

the differential equation is linear, that is ( ) ,,, 2121 vcvbavvx ++=θ  with 

constants ,a  b  and ,c  the method is trivially L-stable. 

Theorem 1. The integration scheme defined by (6) for the numerical 

integration of SPIVP (5) is L-stable and has at least second-order of 

accuracy with the following bounded error inequality: 

( ) ( ) ,1,,1,0,3
1,11,1 −=≤− ++ NnCrxwxv nnnn …  (13) 

where C is independent of ε and r. 

2.5. Approximation of the initial value ϖ 

One of the main problems in applying the shooting methods for solving 

nonlinear SPBVPs is the wide range of the starting initial guess domain, i.e., 

( )m
O

+−ε 1
 [1, 5, 23-30], where m is the order of the SPBVP. This wide range 

hinders obtaining a fast convergent sequence of approximate solutions and 

increases the computational cost of the method even with using stable and 

accurate integration schemes. To overcome these drawbacks, a good 

asymptotic estimation of the starting initial guess is essential to ensure fast 

convergence and low computational cost of the method. 

The reduced problem solution 1v  of the SPIVP (2) satisfies 

 ( ) ( ) ( ) ( ) ,,0,, 1111 β==+′ bvvxqxvvxp  (14) 

and the SPIVP (2) can be asymptotically approximated by [5, 23-26] 

( ) ( ) ( )ε+=+′ε Ovxfvxfv 111 ,,  with ( ) ,1 α=av  (15) 

where ( ) ( )= .,, 111 dvvxpvxf  

From equation (15), we have 

 ( ) ( )( ) ( ) ( ).1
,, 1

1 O
afavaf

av +ε
α−=′=ϖ  (16) 
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And so, a good asymptotic estimation for the starting initial guess 
0ϖ  is 

given by 

 
( )( ) ( )

,
,, 10

ε
α−=ϖ=ϖ ∗ afavaf

 (17) 

with an absolute error ( )1O  and a relative error ( ).εO  

3. Numerical Examples 

To show the applicability and efficiency of the proposed method, we 

have applied it to four test problems at different values of ε, r and                

at tolerance .10
3−=tol  The result numerical solution is compared with         

the exact one. Moreover, the error at the nodal points == +1neE  

( ) ( ) ( ) ,11111 ++++ −=− nnnn xwxyyxy  1,,1,0 −= Nn …  as well as the 

maximum absolute error ,1max ∞+= neE  1,,1,0 −= Nn …  and the order 

of convergence are presented. 

Example 3.1. Consider the following SPBVP from fluid dynamics for 

fluid of small viscosity from Geng and Tang [19]: 

 
( ) ( ) [ ]

( ) ( )



==

∈+=′+′′ε

.11,00

,1,0;21

yy

xxxyxy
 (18) 

The exact solution is given by 

( ) ( ) ( ) ( )
.

1

112
21

1 ε−

ε−

−
−−ε+ε−+=

e

e
xxxy

x

 

Using the present method with the initial guess ,
10

ε
−=ϖ  and at 

tolerance ,101
3−=to  the solution with the desired accuracy is obtained 

through only two iterations. The numerical and the exact solutions of 

Example 3.1 at 
4

10
−=ε  and 1.0=r  are shown in Figure 3.1. The 

maximum absolute error maxE  at different values of ε and r is shown in 

Table 3.1. Results in Table 3.1 confirm that the method results in exact 
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solution for linear SPBVPs with constant coefficients and the result error E 

is due to the round-off error that controlled by the machine precision. 

Comparisons of the numerical results using the present method and those in 

[19, 31-34] are presented in Table 3.2 for ,10
3−=ε  Table 3.3 for 

4
10

−=ε  

and Table 3.4 for .10,10
95 −−=ε  

The numerical results show that the present method is accurate and has 

low computational cost. 

 

Figure 3.1. Exact and numerical solutions of Example 3.1 at ,10 4−=ε  

.1.0=r  

Table 3.1. Maximum absolute error maxE  for Example 3.1 at different 

values of ε and r 

r\ε  0.1 0.08 0.06 0.04 0.02 

3
10

−
 1.1125E-15 2.2204e-15 1.2212e-15 2.4425e-15 2.4425e-15 

4
10

−
 1.7764e-15 5.5511e-16 2.8866e-15 3.5527e-15 4.2188e-15 

5
10

−
 3.3307e-16 9.9920e-16 3.9968e-15 7.7716e-16 2.2204e-15 

6
10

−
 9.9920e-16 2.2204e-15 1.7764e-15 1.1102e-15 3.5527e-15 

7
10

−
 8.8818e-16 1.9984e-15 1.3323e-15 1.2212e-15 1.7764e-15 

8
10

−
 1.5543e-15 1.1102e-15 9.9920e-16 1.7764e-15 2.8866e-15 

9
10

−
 4.4409e-16 1.6653e-15 3.4417e-15 1.8874e-15 2.3315e-15 
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Table 3.2. Numerical solution for Example 3.1 at 1.0,10 3 ==ε −
r  

Nodes 
Exact 

solution 

Kumar et al. 

[31] 

Geng 

[32] 

Geng and 

Tang [19] 

Reddy and 

Chakravarthy 

[33] 

Present 

method 

0.000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

0.001 -0.629857 -0.631119 -0.629684 -0.629852 -1.000997 -0.629857 

0.010 -0.987874 -0.989854 -0.987496 -0.987875 -0.991880 -0.987874 

0.030 -0.967160 -0.969100 -0.966866 -0.967160 -0.971040 -0.967160 

0.100 -0.888200 -0.890000 -0.887957 -0.888200 -0.891800 -0.888200 

0.300 -0.608600 -0.610000 -0.608408 -0.608600 -0.611400 -0.608600 

0.500 -0.249000 -0.250000 -0.248848 -0.249000 -0.251000 -0.249000 

0.700 0.190600 0.190000 0.190706 0.190600 0.189400 0.190600 

0.900 0.710200 0.709999 0.710243 0.710200 0.709800 0.710200 

1.000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 

Table 3.3. Numerical solution for Example 3.1 at 1.0,10 4 ==ε −
r  

Nodes 
Exact 

solution 

Kumar et al. 

[31] 
Geng [32] 

Geng and 

Tang [19] 

Reddy and 

Chakravarthy 

[33] 

Present 

method 

0.0000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

0.0001 -0.631894 -0.632020 -0.633487 -0.631888 -1.000100 -0.631894 

0.0010 -0.998753 -0.998953 -0.997079 -0.998754 -0.999199 -0.998753 

0.0030 -0.996791 -0.996991 -0.995239 -0.996792 -0.997190 -0.996791 

0.1000 -0.889820 -0.890000 -0.888582 -0.889820 -0.890180 -0.889820 

0.3000 -0.609860 -0.610000 -0.608887 -0.889820 -0.610140 -0.609860 

0.5000 -0.249900 -0.250000 -0.249165 -0.249900 -0.250100 -0.249900 

0.7000 0.190060 0.190000 0.190538 0.190060 0.189939 0.190060 

0.9000 0.710019 0.709999 0.710201 0.710019 0.709979 0.710019 

1.0000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 

Table 3.4. Numerical results for Example 3.1 at ,10 5−=ε  910−
 and 1.0=r  

 maxE   N (Grid points) 

ε  Kadalbajoo and 

Kumar [34] 

Present 

method 

 Kadalbajoo and 

Kumar [34] 

Present 

method 

5
10

−
  1.3900e-4 5.5551E-16  240 36 

9
10

−
  1.1900e-4 6.6654E-16  240 39 
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Example 3.2. Consider the variable coefficient SPBVP from Kevorkian 

and Cole [4]: 

 
( ) ( ) ( ) [ ]

( ) ( )






==

∈=−′





 −+′′ε

.11,00

,1,0;0
2

1

2
1

yy

xxyxy
x

xy
 (19) 

The exact solution is approximated by Nayfeh [35] as 

( ) ( ).
2

1

2

1
4

2

ε+−−= ε

−
−

Oe
x

xy

x
x

 

Using the present method with the initial guess ,
2

10

ε=ϖ  and at 

tolerance ,10
3−=tol  the solution with the desired accuracy is obtained 

through only two iterations. The numerical and the exact solutions of 

Example 3.2 at 
4

10
−=ε  and 1.0=r  are shown in Figure 3.2. Moreover, 

the absolute error E for different values of ε at 1.0=r  is shown in Figure 

3.3. The maximum absolute error maxE  and the order of convergence of the 

present method at different values of ε and r are shown in Table 3.5. The 

numerical results using the present method are compared with [19, 31-35] in 

Table 3.6 for 
3

10
−=ε  and Table 3.7 for ,10 5−=ε  ,10 7−

 
910− at .01.0=r  

The numerical results show that the present method results in accurate 

solution overall the problem domain, and converges uniformly to the exact 

solution with at least second-order of accuracy and has a low computational 

cost. 
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Figure 3.2. Exact and numerical solutions of Example 3.2 at ,10 4−=ε  

.1.0=r  

 

Figure 3.3. Error distribution for the solution of Example 3.2 for different 

values of ε at .1.0=r  
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Table 3.5. Maximum absolute errors and the computed order of convergence 

for Example 3.2 at different values of ε and r 

 6
10

−=ε   8
10

−=ε   10
10

−=ε  
r 

 maxE  Order  maxE  Order  maxE  Order 

0.1  1.2781e-03 2.3377  1.2792e-03 2.3463  1.2823e-03 2.0962 

0.08  7.5859e-04 1.9111  7.5782e-04 1.8110  8.0326e-04 2.1196 

0.06  4.3776e-04 1.8517  4.5009e-04 1.9209  4.3656e-04 2.1475 

0.04  2.0662e-04 2.0129  2.0655e-04 2.0015  1.8276e-04 1.8590 

0.02  5.1197e-05   5.1584e-05   5.0381e-05  

Table 3.6. Numerical solution for Example 3.2 at 01.0,10 3 ==ε −
r  

Nodes Nayfeh [35] 
Kumar et al. 

[31] 

Geng and 

Tang [19] 

Reddy and 

Chakravarthy 

[33] 

Present 

method 

0.000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 

0.001 0.3163104 0.3162644 0.3163075 0.4997493 0.3163357 

0.010 0.5024899 0.5024893 0.5024898 0.5020117 0.5024898 

0.020 0.5050505 0.5050505 0.5050505 0.5045496 0.5050505 

0.100 0.5263158 0.5263158 0.5263158 0.5258163 0.5263168 

0.300 0.5882353 0.5882353 0.5882353 0.5877497 0.5882353 

0.500 0.6666667 0.6666667 0.6666667 0.6662214 0.6666667 

0.700 0.7692308 0.7692308 0.7692308 0.7688746 0.7692308 

0.900 0.9090909 0.9090909 0.9090909 0.9089253 0.9090909 

1.000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 

Table 3.7. Numerical results for Example 3.2 at 
975

10,10,10
−−−=ε  and 

01.0=r  

 maxE   N (Grid points) 

ε  Kadalbajoo and 

Kumar [34] 

Present 

method 

 Kadalbajoo and 

Kumar [34] 

Present 

method 

5
10

−
  3.7600e-3 2.0415e-05  240 156 

7
10

−
 

 3.8000e-3 1.2812e-05  240 158 

9
10

−
  3.8000e-3 1.2843e-05  240 160 
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 Example 3.3. Consider the following nonlinear SPBVP from Bender 

and Orszag [1]: 

 
( ) ( ) ( ) [ ]

( ) ( )



==
∈=+′+′′ε

.01,00

,1,0;02

yy

xexyxy
xy

 (20) 

The problem has a uniformly valid approximation for comparison [1] 

given by 

( ) ( ).
2

1
log

2

1
log

2

ε++





+






 +−= ε−

Oe
x

xy

x

 

Using the present method with the starting initial guess 

,
2

1
ln

20








ε−=ϖ  and at tolerance 
3

10
−=tol  results in accurate solution 

over the layer region as well as the outer region. The numerical and the exact 

solutions of Example 3.3 at 1.0,10
4 ==ε −

r  are shown in Figure 3.4. The 

absolute error E for different values of ε at 1.0=r  is shown in Figure 3.5. 

The maximum absolute error maxE  and the computed order of convergence 

of the present method at different values of ε and r are shown in Table 3.8. 

 

Figure 3.4. Exact and numerical solutions of Example 3.3 at ,10 4−=ε  

.1.0=r  
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Figure 3.5. Error distribution for the solution of Example 3.3 for different 

values of ε at .1.0=r  

Table 3.8. Maximum absolute errors and the computed order of convergence 

for Example 3.3 at different values of ε and r 

 6
10

−=ε   8
10

−=ε   10
10

−=ε  
r 

 maxE  Order  maxE  Order  maxE  Order 

0.1  8.5649e-04 2.1766  8.5693e-04 2.1755  8.5943e-04 2.1646 

0.08  5.2698e-04 2.0195  5.2738e-04 2.0174  5.3020e-04 2.0763 

0.06  2.9476e-04 2.0011  2.9516e-04 1.9985  2.9176e-04 1.9828 

0.04  1.3095e-04 1.9753  1.3127e-04 1.9593  1.3058e-04 1.8837 

0.02  3.3301e-05   3.3755e-05   3.5313e-05  
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Figure 3.6. Residual function 
kψ  versus the number of iterations k for the 

present method and SPM ( )1
0 =ϖ  for Example 3.3 at different values of ε 

at .1.0=r  

Table 3.9. Numerical results of SPM and the present method for Example 

3.3 at different values of ε at 1.0=r  

 Residual function 
kψ   Number of iterations k  CPU time (sec) ε 

 
SPM 

 

 

Present 

method 

 
SPM 

 

 

Present  

method 

 
SPM  

Present 

method 

1.0e-01  6.4873e-05  3.9135e-08  5  2  0.722  0.557 

1.0e-02  1.7559e-04  1.5092e-04  40  2  1.257  0.562 

1.0e-03  3.5558e-03  6.6016e-04  410  2  4.672  0.514 

1.0e-04  2.9208e-01  4.5138e-04  900  2  6.995  0.614 

1.0e-06  -  4.3030e-04  -  2  -  0.597 

1.0e-08  -  4.3009e-04  -  2  -  0.691 

1.0e-10  -  4.2920e-04  -  2  -  0.525 

The sign ‘-’ refers to no convergence 

Table 3.9 shows the CPU computational time and the number of 

iterations k required to satisfy the residual function ,
kψ  with ,10

3−=tol  

900<k  for Shooting Piecewise Method (SPM) and the present method with 

the estimated initial guess 
∗ϖ  in (17). Figure 3.6 shows the residual function 
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kψ  versus the number of iterations k for SPM ( )1
0 =ϖ  and the present 

method ( )∗ϖ=ϖ0
 for different values of ε at .1.0=r  Results in Table 3.9 

and Figure 3.6 show that, for SPM, as the value of the perturbation 

parameter ε decreases, the number of iterations required to satisfy the 

residual function 
kψ  increases. While for the present method, the residual 

function 
kψ  is satisfied using only two iterations for all the considered 

values of the perturbation parameter ε. The results shown in Table 3.9 

confirm that the present method has a fast convergent sequence of 

approximate solutions compared to the SPM. Moreover, the results shown in 

Table 3.9 confirm that the present method ensures fast convergence and low 

computational cost compared to the SPM. 

Example 3.4. Consider the well-known third-order Blasius equation         

[36, 37] 

 

( ) ( ) ( ) [ )
( ) ( ) ( )







γ=η′β−=′α−=

∞∈η=η′′η+η′′′

∞→η
,lim,0,0

,,0;0

fff

fff

 (21) 

where α, β and γ are constants, and α represents a suction/injection 

parameter. In practice, we can find the numerical solution only over a finite 

interval. For this reason, we introduce a one-parameter family of problems 

related to Blasius problem on a finite interval ( )L,0  and define 

 
( ) ( ) ( ) [ )
( ) ( ) ( )




γ=′β−=′α−=

∈η=η′′η+η′′′

.,0,0

,,0;0

Lfff

Lfff

LLL

LLL
 (22) 

For moderate-to-large values of the suction/injection parameter α, the 

problem (22) can be written as a SPBVP in the form [26] 

 ( ) ( ) ( ) ( ) ( ) ,1,0;0 γ=β−==′+′′ε yyxyxpxy  (23) 

where ( ) ( ) ,,,
1

, αη−=δη==δαδ−=ε fxpx
L

 and ( ) ( ).η′= fxy  
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Using the present method with a starting initial guess ( )γ+βα−=ϖ0  

and at tolerance 
3

10
−=tol  results into an accurate solution for the problem 

(21) over the layer region as well as the outer region. 

Figure 3.7 shows the numerical solution of (21), using bvp4c 

( )36 10,10 −− == RtolAtol  in Matlab environment and the present method 

at ,0≠α  ,0=β  .1=γ  

According to Weyl [38], “the value ( )[ ]0f ′′  is the essential factor in         

the formula for the skin friction along the immersed plate”. Due to its 

importance, the numerical results using the present method are compared 

with [26, 39] in Tables 3.10 for ,0≠α  ,0=β  .1=γ  Results in Table 3.10 

show that the present method gives more accurate results compared to the 

results in [26, 39]. Moreover, as the suction value increases, the numerical 

error decreases. 

 

Figure 3.7. Solution comparison of ( ),η′f  bvp4c solution (solid lines) and 

present method solution (doted lines) for different values of α at 0=β  and 

.1=γ  
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Table 3.10. Relative error of ( )0f ′′  for 1,0,0 =γ=β≠α  

α 
Numerical 

(bvp4c) 

ADM 

[39] 

Relative 

error % 

El-Zahar and 

EL-Kabeir 

[26] 

Relative 

error % 

Present 

method 

Relative 

error % 

-1.5 1.7319 2.50943 44.9 1.5 13.389 1.7313 0.0346 

-2.0 2.1945 3.00028 36.7 2.0 08.867 2.1933 0.0547 

-2.5 2.6666 1.49962 43.8 2.5 06.244 2.6662 0.0150 

-3.0 3.1451 - - 3.0 04.613 3.1441 0.0318 

-6.0 6.0799 - - 6.0 01.314 6.0793 0.0099 

-12.0 12.0412 - - 12.0 00.342 12.0413 0.0008 

-20.0 20.0101 - - 20.0 00.050 20.0100 0.0005 

-50.0 50.001 - - 50.0 00.002 50.0000 0.0002 

The sign ‘-’ means not available 

4. Conclusion 

In this paper, by combining the shooting technique with an adaptive 

piecewise analytical integration scheme and a good estimated initial guess, 

an effective semi-analytical numerical method is presented for solving 

SPBVPs. Firstly, the original SPBVP is replaced by an equivalent first-order 

SPIVP with an unknown initial condition that can be determined iteratively 

using shooting method. Then, an adaptive one-step explicit piecewise 

analytical integration scheme over a special non-uniform mesh is presented 

to integrate these SPIVPs. The accuracy and stability properties of the 

scheme are investigated and shown to yield at least second-order of accuracy 

and L-stability property. A good estimation of the missed initial condition          

is obtained and suggested as a starting initial guess to ensure accelerated 

convergence of the method. The method results in a piecewise analytical 

solution that enables us from obtaining the solution overall the problem 

domain and not only a numerical solution at specific grid points. To 

demonstrate the applicability of the method, we have applied it to linear and 

nonlinear test problems at different values of the perturbation parameter. The 

method results in the exact solution for linear SPBVPs with constant 

coefficients and a high accurate solution for nonlinear problems through 
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only two iterations for all the considered values of the perturbation 

parameter. The method can be extended to higher-order SPBVPs. We have 

applied it to the well-known third-order Blasius’ viscous flow problem for a 

large suction case. The results indicate that the method approximates the 

solution very well not only over the boundary layer region but also overall 

the problem domain. Moreover, the results confirm that the method is      

more accurate and has a higher computational efficiency compared to other 

methods in the literature. For future work, we are interested in applying        

the present method to many real-world problems and how to extend it to 

fractional SPBVPs. 
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