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Abstract: This paper investigates the controllability of nonlinear dynamical systems and their
applications, with a focus on fractional-order systems and coal mill models. A novel theorem
is proposed, providing sufficient conditions for controllability, including constraints on the
steering operator and nonlinear perturbation bounds. The theorem establishes the existence
of a contraction mapping for the nonlinear operator, enabling effective control strategies for
fractional systems. The methodology is demonstrated through rigorous proof and supported
by an iterative algorithm for controller design. Additionally, the controllability of a coal mill
system represented as a nonlinear differential system, is analyzed. The findings present new
insights into the interplay of fractional dynamics and nonlinear systems, offering practical
solutions for real-world control problems.
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1. Introduction

In recent decades, there has been a growing interest in integral equations and
fractional differential and their importance in various scientific fields, including science
and engineering [1–3]. The appeal of fractional calculus lies in its ability to effectively
describe memory and hereditary properties of diverse materials and processes through
fractional derivatives. Many real-world systems are better characterized by non-integer
order dynamic models derived from fractional calculus, such as the Basset problem,
the Bagley-Torvik equation, and various fluid dynamics models. Fractional dynamical
systems have recently attracted significant interest in control system communities, even
though fractional-order control problems have been studied since the 1960s. Extending
traditional controllers or control schemes to non-integer orders introduces more tuning
parameters and enhances flexibility in adjusting a control system’s response time. As a
result, fractional-order control systems have notably impacted practical applications
across all areas of control theory [4–8]. Despite this, the study of fractional-order
dynamical systems in the context of control theory has been limited due to a lack of
suitable mathematical methods. However, several researchers have made successful
attempts in this field [9–12]. Recently, Kaczorek [13] explored fractional control
problems in SISO and MIMO systems, highlighting that fractional-order controllers
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often exhibit superior performance compared to their integer-order counterparts [13,14]
Consequently, research on fractional-order systems remains an active and expanding
area world wide. A control system is composed of interconnected components
designed to produce a desired response. Controllability, a key structural property
of dynamical systems, signifies the ability to steer a system from any initial state to
any final state using a set of permissible controls. Investigating the controllability of
fractional dynamical systems is essential for various applied problems, as fractional
order derivatives and integrals often yield more effective results in control theory than
their integerorder counterparts. Despite its importance, recent contributions to the
controllability of fractional dynamical systems have been relatively scarce [15].

The controllability of linear fractional dynamical systems was studied by
Matignon and D’Andréa-Novel [16] , while Vinagre et al. [17] introduced key concepts
for fractional-order systems. Bettayeb and Djennoune [18] examined controllability
using rank conditions. Chen et al. [19] concentrated on robust controllability for
uncertain fractional-order linear time-invariant systems formulated in state-space
representation. Guermah et al. [20] discussed the controllability and observability of
discrete-time fractional-order systems. Mozyrska and Torres [21, 22] derived results
on controllability and introduced modified energy control approaches for fractional
linear systems using Riemann-Liouville and Caputo derivatives. In recent studies,
Balachandran et al. [23–27] analyzed the controllability of both linear and nonlinear
fractional dynamical systems, providing sufficient conditions for controllability in
systems with fractional orders 0 < α ≤ 1 and 1 < α ≤ 2. Govindraj and George
[27] analyzed the controllability of semilinear systems through a functional analytic
approach, assuming that the nonlinear term meets Lipschitzian and monotonicity
conditions. This research underscores the controllability of semilinear fractional
dynamical systems where the nonlinear term does not include a controller.

This manuscript examines the controllability conditions for a nonlinear Caputo
fractional system described as follows:

cDα
t0x(t) = Ax(t) + Bu(t) + F(t, x(t), u(t))

x(t0) = x0
(1)

for 0 < α ≤ 1. Here, x(t), defined in the Hilbert space X, represents the state
vector for all t ∈ [t0, t1], and u(t) ∈ L2([t0, t1],U) denotes the control input of
the system Equation (1). The operators A and B are linear. These controllability
conditions are further applied to analyze the controllability of the coal mill pulverizer
model, which is governed by a nonlinear system of the form Equation (1) as we
emphasize the need for a fractional model to represent the Coal Mill Pulverizer system
accurately. Traditional integer-order models fail to capture the inherent nonlinearities,
time-varying dynamics, and memory effects present in the system. The fractional
model, by its nature, can account for these complexities, offering a more accurate
representation of the system’s behavior. For instance, in the coal mill pulverization
process, we observe that the dynamics of coal feed rate and pulverizer pressure exhibit
non-integer-order dependencies that the fractional model captures effectively. This

2



Advances in Differential Equations and Control Processes 2025, 32(1), 2075.

capability is especially important for processes exhibiting long-term memory and time
delays.

2. Preliminaries

This section presents fundamental concepts from fractional calculus, controllability
of linear systems, and non-linear functional analysis, which form the foundation for
this work.
Definition 1. The Riemann-Liouville fractional integral operator of order ν > 0 for a
function g ∈ L1(R+) is expressed as :

Jν
a+g(t) =

1

Γ(ν)

∫ t

a
(t− τ)ν−1g(τ) dτ,

provided the integral on the right-hand side converges. Here, Γ(·) represents the
gamma function [28].
Definition 2. The Caputo fractional derivative of order ν > 0, wherem− 1 < ν < m

and m ∈ N, is defined as :

cDν
a+g(t) =

1

Γ(m− ν)

∫ t

a
(t− τ)m−ν−1d

mg(τ)

dτm
dτ

provided the integral exists, where m = ⌊ν⌋+ 1. [28]
Definition 3. The one-parameter and two-parameter Mittag-Leffler functions are
defined, respectively, as:

Eν(z) =
∞∑
k=0

zk

Γ(νk + 1)
, Eν,µ(z) =

∞∑
k=0

zk

Γ(νk + µ)

where ν, µ > 0 and z ∈ C.
Definition 4. Let Tα(t) and Tα,β(t), for t ≥ 0, denote families of operators mapping
X into itself [28]. These operators, generated by a linear operator A : X → X, satisfy
the following conditions :
1) Tα(0) = I and Tα,β(0) = I , where I is the identity operator.
2) Tα(t) satisfies the linear fractional equation cDαx(t) = A(t)x(t) in a Banach

space X.
3) limµ→1 Tα,β(t) = Tα(t).

Now we will discuss the Controllability of Linear Systems as the controllability
of a nonlinear system depends on the controllability of a corresponding linear system.
Therefore, we have first discussed the controllability of the corresponding linear system

cDα
t0x(t) = Ax(t) + Bu(t)

x(t0) = x0
(2)

where x is the state vector and u is the controller of the system Equation (2).
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The solution of the system Equation (2) is given by

x(t) = Tα(t− t0)x0 +

∫ t

t0

(t− s)α−1Tα,α(t− s)Bu(s)ds. (3)

The linear system Equation (2) is controllable over the interval [t0, t1] if there
exists a controller u(t) steers the initial state x0 to desired final state x1 at time t1. This
means the solution Equation (3) at time t = t1 steers

x1 = x(t1) = Tα(t1 − t0)x0 +

∫ t1

t0

(t1 − s)α−1Tα,α(t1 − s)Bu(s)ds

For discussion of controllability of the linear system Equation (2) define an
operator C : L2([t0, t1],U) → X by

Cu(t) =
∫ t1

t0

(t1 − s)α−1Tα,α(t1 − s)Bu(s)ds (4)

whose adjoint C∗ : X → L2([t0, t1],U)

C∗ω = (t1 − t)1−αB∗Tα,α(t1 − t)ω (5)

Finally defining the operatorW : X → X by

Wω =

∫ t1

t0

Tα,α(t1 − s)BB∗T ∗
α,α(t1 − s)ωds (6)

forgoing theorem gives a characterization for the controllability of linear system over
[t0, t1] Equation (2).
Theorem 1. The following statements are equivalent [27]:
1) The system Equation (2) is controllable.
2) Range(C) = X.
3) There exist γ > 0 such that ||C∗ω||2 ≥ γ2||ω||2 for all ω ∈ X.
4) There exist γ > 0 such that < Wω, ω >≥ γ2||ω||2 for all ω ∈ X.
5) Kernel(C∗) = {0} and Range(C∗) is closed.
A controller that steers given initial state x0 to desired final state x1 is given by

u(t) = (t1 − t)1−αB∗T ∗
α,α(t1 − t)W−1

[
x1 − Tα,α(t1 − t0)x0

]
Corollary 1. If the system Equation (2) is controllable on [t0, t1] then, there exists
steering operator S : X → L2([t0, t1],U) define by Sω = C∗W−1ω is the right
inverse of C [27]. This means C ◦ S = I .

3. Controllability of nonlinear system

This section discusses the controllability of the Caputo fractional nonlinear system.
The system governed by

cDα,t0x(t) = Ax(t) + Bu(t) + F(t, x(t), u(t))

x(t0) = x0
(7)
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where 0 < α ≤ 1, x(t) represents the state, and u(t) denotes the controller of the
system described by Equation (7). models a Caputo fractional nonlinear system where
0 < α ≤ 1 is the fractional order. In this context, x(t) represents the state vector,
capturing the system’s dynamic states, while u(t) denotes the control input applied
to influence the system’s behavior. The system matrix A encapsulates the inherent
dynamics, such as damping or stiffness effects, and the control matrix B describes
how the control inputs impact the system’s states. The term F(t, x(t), u(t)) accounts
for nonlinearities, including effects such as friction or saturation, which depend on
the system state and control. The use of the Caputo fractional derivative cDα,t0

introduces memory effects, meaning that the current state depends not only on the
present dynamics but also on the entire past behavior. Equation (8) provides the mild
solution of Equation (8), derived using fractional calculus principles. The solution is
expressed as Assuming the nonlinear function F is sufficiently well-behaved so that
the system Equation (7) admits a unique mild solution:

x(t) = Tα(t− t0)x0 +

∫ t

t0

(t− s)α−1Tα,α(t− s) [Bu(s) + F(s, x(s), u(s))] ds (8)

for all fixed u.
The system described by Equation (7) is considered controllable over the interval

[t0, t1] if there exists a controller u(t) that drives the initial state x0 to the desired final
state x1 at time t1. This means

x1 = x(t1) = Tα(t−t0)x0+

∫ t1

t0

(t1−s)α−1Tα,α(t1−s) [Bu(s) + F(s, x(s), u(s))] ds

The above equation represents the fractional-order system’s free-response operator.
The first term, Tα(t − t0)x0, captures the free evolution of the state starting from the
initial condition x0, while the integral term incorporates the effects of the control input
u(t) and the nonlinearities F(t, x(t), u(t)). The kernel (t− s)α−1 reflects the memory
characteristic inherent in fractional-order systems.

To analyze the controllability of a nonlinear system, we define the operator G :

L2([t0, t1],U) → X by

Gu =

∫ t1

t0

(t1 − s)α−1Tα,α(t1 − s) [Bu(s) + F(s, x(s), u(s))] ds

= Cu+

∫ t1

t0

(t1 − s)α−1Tα,α(t1 − s)F(s, x(s), u(s))ds

(9)

then operator determines whether the system is controllable by mapping the input
space to the state space, with controllability achieved if and only if G is onto. The
nonlinear term F(t, x(t), u(t)) must satisfy certain regularity conditions, such as
Lipschitz continuity, to ensure the existence and uniqueness of the mild solution, which
is necessary for practical implementation of control strategies.

Assuming controllability of the corresponding linear system, define the operator
Ḡ : X → X by
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Ḡω = G ◦ Sω = C ◦ Sω +

∫ t1

t0

(t1 − s)α−1Tα,α(t1 − s)F(s, xω(s),Sω(s))ds

= ω +Hω = (I +H)ω

(10)

where I is the identity operator Equation(7).
Theorem 2. The system Equation (7) is controllable if the operator Ḡ is non-singular,
and the controller that steers the initial state to the desired final state x1 at time t1 is
given by

u(t) = C∗W−1Ḡ−1 [x1 − Tα(t1 − t0)x0]

Proof. Since the operator Ḡ is non-singular, substituting the controller into the
Equation (8), the state of the system at t = t1 becomes:

x(t1) = Tα(t− t0)x0 + Gu

= Tα(t− t0)x0 + (I +H)(CC∗)W−1(I +H)−1 [x1 − Tα(t1 − t0)x0]

= x1

Hence, the system is controllable over the interval [t0, t1]. □
Therefore, the controllability of system Equation (7) reduces to the invertibility of

the operator Ḡ. The following theorem derives the conditions under which the operator
Ḡ is non-singular.
Theorem 3. If the operator H(n) is a contraction for some n ≥ 1, then Ḡ is
non-singular.

Proof. IfH(n) is a contraction for some n ≥ 1, then by the Banach fixed point theorem,
the operator equation ω = −Hω has a unique solution. This implies that the equation
(I +H)ω = 0 has a unique trivial solution. Hence, the operator Ḡ is non-singular. □

The next theorem discusses the controllability of the nonlinear system Equation
(7).
Theorem 4. If
1) The corresponding linear system is controllable.
2) There exist constants f1 and f2 such that

||F(t, x1, u1)−F(t, x2, u2)|| ≤ f1||x1 − x2||+ f2||u1 − u2||

for all x, u ∈ Br0(x0, u0) for some r0 > 0 where

u0(t) = (t1 − t)1−αB∗T ∗
α,α(t1 − t)W−1 [x1 − Tα,α(t1 − t0)x0]

then the nonlinear system Equation (7) is controllable over [t0, t1] and the controller
which drives the system Equation (7) to desired final state x1 at t = t1 is given by

u(t) = C∗W−1Ḡ−1 [x1 − Tα(t1 − t0)x0]

Proof. To prove the system is controllable, it is sufficient to prove that the operatorH(n)
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is a contraction for some n ≥ 1. Therefore, for x1, x2, u1, u2 ∈ B(x0, u0), consider

||H(n)x1 −H(n)x2|| ≤
∫ t1

t0

(t1 − s)α−1||Tα,α|| ||H(n−1)x1 −H(n−1)x2|| ds

≤ M2(f1 + f2S)

∫ t1

t0

∫ t1

t0

(t1 − s)α−1(t1 − s1)||H(n−2)x1 −H(n−2)x2|| ds1 ds

≤ M3(f1 + f2S)
2

∫ t1

t0

∫ t1

t0

(t1 − s)α−1(s− s1)(s1 − s2)
α−1||H(n−3)x1 −H(n−3)x2|| ds2 ds1 ds

and continuing this process gives

||H(n)x1−H(n)x2|| ≤ Mn(f1+f2S)
(n)

∫ t1

t0

(t1−t0)
n(α−1) (t1 − s)n−1

(n− 1)!
ds ||x1−x2||

≤ Mn(f1 + f2S)
(n)(t1 − t0)

nα

n!
||x1 − x2||

where S is a bound for the steering operator S and is finite as the corresponding linear
system is controllable.

Since
Mn(f1 + f2S)

(n)(t1 − t0)
nα

n!
→ 0 as n → ∞

there exists an n such that the operatorH is a contraction. Hence, the system Equation
(7) is controllable, and the controller u(t) which drives the system Equation (7) to the
desired final state x1 is given by

u(t) = C∗W−1Ḡ−1 [x1 − Tα(t1 − t0)x0]

This completes the proof. □
The algorithm to find the controller and the state is given by

u(n)(t) = C∗W−1(I +H)−1 [x1 − Tα(t1 − t0)x0]

x(n+1)(t) = Tα(t− t0)x0 +

∫ t

t0

(t− s)α−1Tα,α(t− s)
[
Bu(n)(s) + F(s, x(n)(s), u(n)(s))

]
ds

H(n)x
(n)
1 =

∫ t1

t0

(t1 − s)α−1Tα,α(t1 − s)F(s, x(n−1)(s),Sx(n−1)(s)) ds

(11)

where

u0(t) = (t1 − t)1−αB∗T ∗
α,α(t1 − t)W−1 [x1 − Tα,α(t1 − t0)x0]

4. Modelling and controllability analysis of the coal mill system

This section provides an overview of the coal mill process and its modeling and
Controllability Analysis. A simplified schematic of a roll mill is shown in Figure 1.
In the system, raw coal is transported via conveyor belts and fed into the mill, where
rollers crush it on a grinding table. Fine coal particles are carried upward by primary
air introduced from the mill’s base, which directs them toward the classifier section.
The classifier selectively allows the smallest particles to exit the mill while larger
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particles are returned to the grinding table for further processing. Rotary classifiers,
when employed, enable adjustment of coal output by modifying the rotational speed,
allowing larger particles to pass if needed.The general flow of coal particles within
the mill is illustrated in Figure 1. The mathematical model developed for this system
primarily captures the nominal grinding process [29]. However, it is also robust enough
to represent the dynamic behavior during start-up and shutdown operations. The key
aspect of the model is the circulation of coal particles within the mill, as depicted in the
layout.

As illustrated in Figure 1, the circulation of coal particles forms a fundamental
aspect of the model.

Figure 1. Flow of coal particles in a roll wheel mill [30].

To develop the mathematical model, the following parameters and variables are
defined [29], as illustrated in Figure 2:
• mc(t): Mass of raw coal awaiting pulverization.
• mpc(t): Mass of pulverized coal present on the grinding table.
• mcair(t): Mass of coal particles transported pneumatically within the mill.
• win/wc(t): Mass flow rate of raw coal entering the mill.
• wret(t): Mass flow rate of particles rejected by the classifier and returned for

further grinding.
• wpc: Mass flow rate of coal picked up from the table by primary air.
• wout: Mass flow rate of pulverized coal exiting the mill.
• wair: Mass flow rate of primary air.
• ω: Rotational speed of the classifier.

Using the principle of continuity, the rate of change of mass of coal (mc) to be
pulverized is equal to the mass flow of raw coal (wc/win) and the return flow of the
particles rejected by the classifier (wret) and the grinding rate which is proportional to
the mass of raw coal at the grinding table (mc).

d

dt
mc(t) = wc(t) + wret(t)− θ1mc(t) (12)

8
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Figure 2. Schematic representation of coal particle flow dynamics in a mill [30].

The rate of change of pulverized coal (mpc) at the table is equal to the amount of
grinded raw coal(mc) minus the amount of coal picked up by the primary air from the
table (wpc)

d

dt
mpc(t) = θ1mc(t)− wpc(t) (13)

The mass flow of the coal particles collected from the grinding table by primary air
(wpc) minus the fuel out of the mill (wout) and the return flow of the rejected particles
to the table (wret) are equal to the rate of change in the mass of the particles in the
pneumatic transport up (mcair) in the mill

d

dt
mcair(t) = wpc(t)− wout(t)− wret(t) (14)

The primary air mass flow (wair) and the mass of pulverised coal on the table
(mpc) are proportional to themass flow of pulverized particles picked up by the primary
air (wpc) to be transferred towards the classifier.

d

dt
wpc(t) = θ5wair(t)mpc(t) (15)

The mass flow of pulverized coal out of the mill (wout) is proportional to the mass
of coal lifted off the table (mcair) and is influenced by the classifier speed omega.

wout(t) = θ4mcair(t)(1−
ω(t)

θ6
) (16)

where 0 < ω(t) < θ6.θ6
The mass of coal in the pneumatic transportmcair is equal to the mass flow of coal

returning to the grinding table proportional to

wret(t) = θ9mcair(t) (17)

Niemczyk et al. [30] proposed a mathematical model for the coal mill pulverizer
problem, described by a nonlinear system of differential Equations (12)–(14) can be
written as:
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d

dt
mc(t) = wc(t) + θ9mcair(t)− θ1mc(t)

d

dt
mpc(t) = θ1mc(t)− θ5wair(t)mpc(t)

d

dt
mcair(t) = θ5wcair(t)mpc(t)− θ4mcair(t)

(
1− ω(t)

θ6

)
− θ9mcair(t)

(18)

where the variables represent the mass of coal to be pulverized mc(t), the mass of
pulverized coal on the table mpc(t), and the mass of particles in pneumatic transport
mcair(t), while wc(t) and wair(t) are the respective mass flows, and ω(t) denotes the
classifier speed.

Let us define the system states as x1(t) = mc(t), x2(t) = mpc(t), and x3(t) =

mcair(t), while the control inputs are u1(t) = wc(t), u2(t) = wair(t), and u3(t) =

ω(t). With this, the model in Equation (18) becomes:

ẋ1 = −θ1x1 + θ9x3 + u1

ẋ2 = θ1x1 − θ5u2x2

ẋ3 = −(θ4 + θ9)x3 + θ5u2x2

(19)

where the constants θ1, θ4, θ5, θ6, and θ9 are known system parameters.
The coal mill pulverizer system exhibits highly nonlinear behaviors, time-varying

dynamics, and long-term memory effects, making its control and modeling particularly
challenging. Traditional integer-order models often fail to accurately capture
these complexities due to their inability to represent the system’s hereditary and
memory-dependent properties. Fractional-order models, on the other hand, inherently
incorporate memory effects and fractional dynamics, offering a more precise
representation of such systems. For example, the grinding process in a pulverizer
involves not only instantaneous changes in the coal flow but also long-term effects
of grinding and accumulation, which are naturally modeled by fractional derivatives.
This study, therefore, leverages fractional-order modeling to better characterize the
coal mill’s dynamics, providing a foundation for more effective control strategies. In
the context of coal mill systems, fractional calculus provides significant advantages
over traditional integer-order models by accurately capturing the inherent complexities
of the process. Coal pulverization involves non-linearities, time-varying dynamics,
and considerable memory effects due to delays in grinding and material transport.
While integer-order models can approximate some dynamics, they often fail to address
the long-term dependencies and intricate transient behaviors observed in real-world
systems. Therefore, we now propose a fractional-order version of the system in
Equation (19), given by:

cDαx1 = −θ1x1 + θ9x3 + u1
cDαx2 = θ1x1 − θ5u2x2

cDαx3 = −(θ4 + θ9)x3 + θ5u2x2 + θ4x3
u3
θ6

(20)

Next, we focus on the controllability analysis of the fractional system in Equation
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(20), assuming a constant control input u2 = 0.02. This leads to the simplified system:

cDαx1 = −θ1x1 + θ9x3 + u1
cDαx2 = θ1x1 − 0.02θ5x2

cDαx3 = 0.02θ5x2 − (θ4 + θ9)x3 + θ4x3
u3
θ6

(21)

This can be expressed in a more compact form as:

cDαx(t) = Ax(t) + Bu(t) + F(t, x(t), u(t)) (22)

where x =

x1x2
x3

 represents the state vector and u =
[
u1 u2 u3

]
is the control input.

The system matrices A, B, and the nonlinear term F(t, x(t), u(t)) are given by:

A =

−θ1 0 θ9

θ1 −0.02θ5 0

0 −0.02θ5 −(θ4 + θ9)

 ,B =

10
0

 ,F(t, x(t), u(t)) =

 0

0
θ4
θ6
x3u3


Since the rank of the controllability matrix P = [B : AB : A2B] is 3 therefore

the controllability Gramian of the linearized system is non-singular, the system is
controllable in the linear case. Moreover, the nonlinear term F(t, x(t), u(t)) satisfies
a Lipschitz condition, with constants f1 = θ4

θ6
|u03| and f2 = θ4

θ6
|x03|, ensuring that:

||F(t, x(t), u(t))−F(t, y(t), v(t))|| ≤ f1||x− y||+ f2||u− v||

By the controllability theorem, this implies that the system is controllable
over a finite time interval. The transition from traditional integer-order models to
fractional-order systems provides enhanced controllability insights for the coal mill
pulverizer system. By accounting for memory and hereditary effects, fractional
dynamics enable the model to capture gradual changes and interdependencies that
would otherwise be overlooked in integer-order approaches. For instance, the system’s
response to varying coal loads and grinding pressures is significantly influenced by
past operational states, which are naturally incorporated through fractional derivatives.

5. Conclusion and future direction

This study presents a comprehensive analysis of the controllability of nonlinear
dynamical systems, with a focus on fractional-order systems and coal mill models. A
theorem establishing sufficient conditions for controllability was rigorously derived,
demonstrating the role of contraction mappings in ensuring system control. The
proposed iterative algorithm offers a practical framework for designing controllers
capable of driving nonlinear systems to desired states. Furthermore, the application
to the coal mill system highlights the adaptability of the methodology to real-world
industrial processes. The results emphasize the significance of fractional dynamics
in advancing the understanding and control of complex systems, laying a foundation
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for further research and development in this field. Looking ahead, future research
will extend this methodology to more complex systems and incorporate additional
control strategies. The application of fractional dynamics to other industrial processes
and emerging technologies, such as robotics and autonomous systems, will also be
explored. Moreover, future work will focus on refining the iterative algorithm to
enhance computational efficiency and robustness, particularly for large-scale systems.
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